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● CausalBench is a benchmarking 

platform for Causal Learning 

research.

● Goals:

○ Promoting universal adoption of 

standard datasets, metrics and 

procedures for causal learning.

○ Facilitating collaboration.

○ Trustable and reproducible 

benchmarking.

○ Fair and flexible comparison of 

models.

What is CausalBench?
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CausalBench: Use Scenario #1
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Data, model, metric
contributor



CausalBench: Use Scenario #2
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Data, Model, Metric 
Explorer



CausalBench: Use Scenario #3
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Benchmark executor



What is a Benchmark?

7



CausalBench: Use Scenario #3
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Benchmark executor



Sample benchmark output
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Permanently indexed (and citable) 
in Zenodo

Uploaded and stored in CausalBench

- Includes
- Model
- Dataset
- Hardware/software profiling
- Accuracy metrics



CausalBench: Use Scenario #4
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Benchmark explorer



CausalBench: Exploring benchmark results
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4

5

1

6

1. Repository selector
2. Search Function
3. Filter/Sort
4. Detail overview
5. On-demand details
6. Download/Cite

11
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CausalBench: Explaining benchmark results
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● Sample question:
○ Why does VAR-LiNGAM have better accuracy with time_sim but lower training 

time in this benchmark?

■ Did the hyperparameters play a role?

■ Could it be because of the dataset size?

■ Is there something else?

● These questions can be answered by generating explanations using CausalBench.



● Sample question:
○ Why does VAR-LiNGAM have better accuracy with time_sim but lower training 

time in this benchmark?

■ Did the hyperparameters play a role?

■ Could it be because of the dataset size?

■ Is there something else?

● These questions can be answered by generating explanations using CausalBench.

CausalBench: Explaining benchmark results
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Components of 
CausalBench ● CausalBench contains three components:

○ The python package handles the 

process of benchmarking.

○ The web backend receives the 

results from the python package 

and publishes it to zenodo.

○ The web frontend provides users 

with a GUI to browse benchmark 

runs, datasets, models, metrics and 

contexts already published to 

causalbench.org.

14

http://causalbench.org


Agenda for today’s 
Hands-on Tutorial
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tutorial.causalbench.org

08:00-08:05 Introduction to the Tutorial

08:05-08:25 Introduction to CausalBench

08:25-08:55 Introduction to Causality and Causal 

Learning

08:55-09:30 Delve into the CasualBench framework to 

create and execute benchmarks

09:30-10:00 Coffee break

10:00-10:10 Shorter introduction to CausalBench

10:10-10:35 Explore published benchmarks and 

reproduce experiments

10:35-10:50 Gain further insights using Causal 

Explanation and Recommendations

10:50-11:00 CausalBench: What's Next?



End of Deck 1

Any Questions?
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CausalBench: Causal Learning
Research Streamlined

CausalBench BenchmarkingCausality

tutorial.causalbench.org
17

Understanding 
Causality

This research is funded by NSF Grant 2311716, "CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for 
Efficacy, Reproducibility, and Scientific Collaboration", and NSF Grants #2230748, "PIRE: Building Decarbonization via 

AI-empowered District Heat Pump Systems", #2412115, "PIPP Phase II: Analysis and Prediction of Pandemic Expansion 
(APPEX)" and USACE #GR40695, "Designing nature to enhance resilience of built infrastructure in western US landscapes".



Causal Learning:
Why it matters?

1. What is Causal Learning?
2. Why does Causal Learning matter?
3. Two Tasks in Causal Learning.

18



Interests in “Causal Learning”
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Google Trends for the term “Causal Learning”

Apr 1, 2023

Nov 1, 2016
Jun 1, 2010



Interests in “Causal Learning”

20

# of papers published at KDD with the term “causal” in the title



What is Causal Learning?

Causal Learning answers the question of “Why” and describe the relationship between

● a cause (an action, event, or condition), and 
● its effect (an outcome that results from it).

21

What’s the effect of the vaccine on a 
patient’s health?

How do socioeconomic status, nutrition, study 
time, and, sleep, influence student GPA?
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Two Tasks in Causal Learning

What’s the effect of the vaccine on 
a patient’s health?

How do socioeconomic status, nutrition, 
study time, and, sleep, influence student 
GPA?

Causal Discovery
We don’t know what causes what. We 
want to uncover the structure — who 
influences whom.
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Two Tasks in Causal Learning

What’s the effect of the vaccine on 
a patient’s health?

How do socioeconomic status, nutrition, 
study time, and, sleep, influence student 
GPA?

Causal Discovery
We don’t know what causes what. We 
want to uncover the structure — who 
influences whom.

Causal Effect Estimation
Knowing  cause and effect, want to 
estimate how much effect one variable 
has on another.



So…why does causal learning matter?

● Traditional data analysis and retrieval is based on statistical/probabilistic cues underlying the data

○ e.g. dimensionality reduction often relies on identifying and eliminating redundancies in terms of correlation or covariance

24

F1

F2

F3

Latent component is a 
combination of 
features!



So…why does causal learning matter?

25

● Examples range from simple matrix decomposition (e.g., PCA) to more complex DNNs

Principal Component Analysis

DNN (VGG16)



Problem: this approach does not always make sense!
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Vaccine

Mortality

e.g. Simpson’s paradox



Problem: this approach does not always make sense! 
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Vaccine

Mortality

age=20

age=40

age=60

• “Age” is an (unobserved)  confounding variable

• Data analysis without accounting for confounding variables will result in wrong 
conclusions… 

Age

Vaccine Mortalit

y



Key questions..

• Q1: Can we obtain causal knowledge (discover the causal graph) from observations and 
answer causal queries?

• Can we analyze observations to discover underlying causally-meaningful patterns and relationships 
between input parameters, key events/interventions, and outcomes?

• Q2: Can we compute the probability distribution of Y after we intervene on X – denoted as     
P(Y | do(X = x))?

• Q3: If we are given a-priori causal knowledge, can we leverage this in our data analysis or in 
explaining our results?

• Can we support causally-informed explanations and  root-cause analysis?

• Can we support what-if analysis  and optimize for different outcomes?

• Can we transfer knowledge and models across causally-similar systems?

• Can we make causally-robust predictions and recommendations?

28



Causal Model Frameworks

A Causal Model Framework helps us

● represent how variables influence each other
● make predictions under interventions, not just 

observations
● go beyond correlation to answer “why” and “what if” 

questions

29

Judea Pearl

Donald Rubin



Causal Model Frameworks

A Causal Model Framework helps us

● represent how variables influence each other
● make predictions under interventions, not just 

observations
● go beyond correlation to answer “why” and “what if” 

questions

There is no single causal model — different frameworks suit 
different goals:

● Pearl’s Causal Model: Popular in computer science.
● Rubin’s Causal Model: Popular in statistics, 

econometrics.
● and more…

30

Judea Pearl

Donald Rubin



Causal Discovery

● Constraint-based: PC
[1]

, FCI
[2]

● Score-based: GES
[3]

, FGES
[4]

● Functional: LiNGAM
[5]

, ANM
[6]

● Optimization-based: NOTEARS
[7]

, DAG-GNN
[8]

● Temporal: PCMCI+
[9]

, VAR-LiNGAM
[10]

Causal Effect Estimation

● Regression-based: Linear regression
[11]

, GLMs
[12]

● Matching: Propensity score
[13]

, Mahalanobis
[14]

● IPW (Inverse Probability Weighting)
[15]

● Meta-learners
[16]

: S-Learner, T-Learner, X-Learner

● Causal Forests
[17]

● DML (Double Machine Learning)
[18]

Causal Algorithms

31

Highlighted algorithms are 
supported by CausalBench 

out-of-box.

Highlighted algorithm is used for 
causal explanation in CausalBench.



Basics of Causal 
Graphs

1. What’s a Causal Graph?
2. Causal Graph and Data 

Dependencies
3. D-Separation

32



Causal graph: nodes and edges

We use a Causal Graph G = (V, E) to 
describe the causal relationships between 
variables. 

A common assumption is that causal graphs 
are acyclic.

33

socioeconomic 
status SES

Nutrition

Study Time GPA Sleep



Key concepts  - Mediator/Chain

34

Graph Structure

A B C

B is a “mediator”

A

B

A

C

B

C

Data (in)dependencies

 
● A and B are dependent
● B and C are dependent
● A and C are dependent

Real World Example

A: Sleep time
B: Wake-up time
C: Arrival time at 
work



Key concepts - Fork/Common Cause
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A

B

A

C

B

C

Data (in)dependencies

 
● A and B are dependent
● B and C are dependent
● A and C are dependent

Real World Example

A: Vaccine
B: Age
C: Mortality

Graph Structure

A
B

CB is a “fork”



Key concepts - Collider/V-structure/Common Effect
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A

B

A

C

B

C

Data (in)dependencies

 
● A and B are dependent
● B and C are dependent
● A and C are independent

Real World Example

A: Good Looking
B: Award
C: Acting Ability

Graph Structure

A

B is a “collider”
B

C



Summary - (in)dependencies
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Graph Structure

A

B is a “collider”
B

C

A
B

CB is a “fork”

A B C

B is a “mediator”

Chain

Fork

Collider

● A and B are dependent
● B and C are dependent
● A and C are dependent

● A and B are dependent
● B and C are dependent
● A and C are dependent

● A and B are dependent
● B and C are dependent
● A and C are independent

Data (in)dependencies



● Conditioning: set a variable to a fixed value. P(A, C | B = 3)

Conditioning and Conditional Independence

38

A CB = 3

● Conditional Independence: Two variables C and A are conditionally independent given B

P(A, C | B = 3) = P(A | B = 3)P(C | B = 3)? 

A CB = 3



Key concepts - Mediator/Chain

A B C

A and C are causally related, but if we fix the value of “B”, then 
they appear independent from each other 

A

C
B=3

B is a “mediator”

A

B

A

C

B

C



Key concepts - Fork

A and C are correlated, but if we fix the value of “B”, then the 
correlation disappears 

B=3

A

C

A
B

CB is a “fork”

A

B

A

C

B

C



Key concepts - Collider

41

A and C are independent, but if we fix the value of “B”, then A and C 
appears to be (negatively) correlated 

A

C

A

B is a “collider”
B

C

B=3

A

B

A

C

B

C



Graph Structure

Summary - (in)dependencies

42

A

B is a “collider”

C

A CB is a “fork”

A C

B is a “mediator”

Chain

Fork

Collider

● A and B are dependent
● B and C are dependent
● A and C are independent

● A and B are dependent
● B and C are dependent
● A and C are independent

● A and B are dependent
● B and C are dependent
● A and C are dependent

Data (in)dependencies
When Conditioned on B

B

B

B



Key concepts - Causal blocking

43

● A path in the causal graph is blocked
[a]

 if 

○ the path contains a chain or a fork that has been conditioned, 

○ the path contains a collider such that the collision node and its descendants have not been conditioned

[a] Pearl, J. 2009a. Causal inference in statistics: An overview. Statist. Surv., 3: 96–146.

X Y

X Y

X Y



Key concepts - Causal blocking

44

● A path in the causal graph is blocked
[a]

 if 

○ the path contains a chain or a fork that has been conditioned, 

○ the path contains a collider such that the collision node and its descendants have not been conditioned

[a] Pearl, J. 2009a. Causal inference in statistics: An overview. Statist. Surv., 3: 96–146.

X Y

X Y

X Y

Conditioning erases evidence of the underlying causal relationships



Key concepts - Causal blocking

45

● A path in the causal graph is blocked
[a]

 if 

○ the path contains a chain or a fork that has been conditioned, 

○ the path contains a collider such that the collision node and its descendants have not been conditioned

[a] Pearl, J. 2009a. Causal inference in statistics: An overview. Statist. Surv., 3: 96–146.

X Y

X Y

X Y

Conditioning erases evidence of the underlying causal relationships

Conditioning unblocks the path and introduces spurious correlations



Key concepts - Causal blocking

46

● A path in the causal graph is blocked
[a]

 if 

○ the path contains a chain or a fork that has been conditioned, 

○ the path contains a collider such that the collision node and its descendants have not been conditioned

[1] Pearl, J. 2009a. Causal inference in statistics: An overview. Statist. Surv., 3: 96–146.

X Y

X Y

X Y

Conditioning erases evidence of the underlying causal relationships

Conditioning unblocks the path and introduces spurious correlations

Let X, Y, Z be three sets of nodes in a causal graph G. 

X and Y are d-separated given Z, if all path from X to Y through Z are blocked. 



Task: Causal 
Discovery

1. What is Causal Discovery?
2. Common Assumptions
3. Markov Equivalence Class
4. Model: PC Algorithm
5. Metrics

47



Where do causal graphs come from ?

So, causal graph is a useful tool– but, where does it come from?

● Option #1: Expert provided - Rare, Scarce

● Option #2:  Learned from observations - Causal Discovery!!!

48



Causal Discovery

49

49

SES Nutrition

Study Time GPA Sleep

SES Nutrition Study Sleep GPA

… … … … …



Causal Discovery

50

50

SES Nutrition

Study Time GPA Sleep

SES Nutrition Study Sleep GPA

… … … … …

If observations are temporal, rely on 
whether one variable can be used to 

predict the other.



Causal Discovery

51

51

SES Nutrition

Study Time GPA Sleep

SES Nutrition Study Sleep GPA

… … … … …

If observations are not temporal, 
consider what  statistical 

independences result from 
conditioning variables (d-seperation). 

If observations are temporal, rely on 
whether one variable can be used to 

predict the other.



Causal Discovery
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52

SES Nutrition

Study Time GPA Sleep

SES Nutrition Study Sleep GPA

… … … … …

If observations are not temporal, 
consider what  statistical 

independences result from 
conditioning variables (d-seperation). 

If observations are temporal, rely on 
whether one variable can be used to 

predict the other.



Common Assumptions

● Markov Condition
○ A variable is independent of non-descendents, 

given its parents.
○ All conditional independencies in the graph are 

reflected in the dataset. 

53

P
1

P
2

X

C

Y

Z

P(X | P
1

, P
2

, Y, Z) = P(X| P
1

, P
2

)



Common Assumptions

● Markov Condition
○ A variable is independent of non-descendents, given its parents.
○ All conditional independencies in the graph are reflected in the dataset. 

● Faithfulness
○ All conditional independencies in the data (D) are reflected in the graph 

structure.
○ Conditional independence = d-separation.

54



Common Assumptions

● Markov Condition
○ A variable is independent of non-descendents, given its parents.
○ All conditional independencies in graph reflected in dataset. 

● Faithfulness
○ All conditional independencies in the data (D) are reflected in the graph 

structure.
○ Conditional independence = d-separation.

●  Sufficiency
○ All common causes are included among the observations.
○ No missing variables, no latent variables.

55



Warning! - conditional independence tests may not 
always be sufficient to distinguish causal graphs 

● In the example on the right,
○ Causal graphs #1, #3, and #4 have the same conditional 

independence structure
■ X dependent on Z
■ X  independent from Z, only given Y

○ #2  has a different conditional independence structure
■ X independent from Z
■ X dependent on Z, given Y

● #1, #3, and #4 are said to be in the same Markov Equivalence 
Class

56



Models: Peter-Clark (PC) Algorithm

Key idea:

● Uses conditional independence tests to infer graph structure.

○ If variables X and Y are conditionally independent given any set of variables (excluding X and Y), 

there cannot be a direct causal edge between X and Y.

57



Steps:

1. Start with a fully connected undirected graph.

58

Ground truth

Undirected graph

Models: Peter-Clark (PC) Algorithm



Steps:

1. Start with a fully connected undirected graph.

2. Consider conditioning set sizes m=1,2, ... 

a. For each edge X->Y

b. Check if there is a set S of size m that renders X and Y 

statistically independent

c. If such a set, S, is found, then remove the edge from the 

graph

59

Ground truth

Undirected graph

Models: Peter-Clark (PC) Algorithm



Steps:

1. Start with a fully connected undirected graph.

2. Consider conditioning set sizes m=1,2, ... 

a. For each edge X->Y

b. Check if there is a set S of size m that renders X and Y 

statistically independent

c. If such a set, S, is found, then remove the edge from the 

graph

60

Ground truth

Undirected graph
Remove edge per step 2

Models: Peter-Clark (PC) Algorithm



Steps:

1. Start with a fully connected undirected graph.

2. Consider conditioning set sizes m=1,2, ... 

a. For each edge X->Y

b. Check if there is a set S of size m that renders X and Y 

statistically independent

c. If such a set, S, is found, then remove the edge from the 

graph

3. Orient remaining edges based on collider rules

a. For each pair of non-neighbors, X and Y, with a common 

neighbor, Z

i. If Z is not in the separator set for X and Y, then we 

must have  X -> Z <- Y

Can only discover up to a markov equivalent class (MEC)

61

Ground truth

Directed graph
Edge orientation per step 3

Models: Peter-Clark (PC) Algorithm



Metrics - Graph Structure

● A Ground Truth Graph is required.

● Uses adjacency matrix to represent Causal Graphs.
○ Ground Truth Adjacency Matrix A, 
○ Predicted adjacency matrix A*.

● Compare edges in the two causal graphs:
○ Precision, Recall, F1, and more...
○ SHD (Structural Hamming Distance) = # insertions + # 

deletions + # flips.
■ In the  example, SHD(A, A*) = 2

62

A

A*

X

ZY

X

ZY

G

G*



Metrics - Intervention behavior

● Intervention
○ like randomized experiments; not conditioning.
○ remove incoming edge, denoted by do(X).

● intervention distribution 
○ P(Yj | do(Xi))

● Structural Intervention Distance (SID)

○ count how many node  pairs (i, j) exist where G* would 
produce a different intervention distribution than G.

● Example:
○ (X,Y), (Y,X), (Z,X), (Z,Y): no difference
○ (X,Z), (Y,Z): different (Y -> Z not in G*)
○ SID = 2

63

G

G*



Other Causal Discovery Models

Score-Based

● Search for the best-fitting graph by optimizing a scoring function like BIC or likelihood.
● GES[3], FGES[4]

Functional Form-Based

● Assume specific functional forms (e.g., additive noise) to infer causal direction.
● LiNGAM[5], ANM[6]

Optimization-Based

● Frame structure learning as a continuous optimization problem over graphs with acyclicity constraints.
● NOTEARS[7], DAG-GNN[8]

Temporal Data

● Extend causal discovery to time series by accounting for time lags and autocorrelation.
● PCMCI+[9], VAR-LiNGAM[10]

64



Task: Causal Effect 
Estimation

1. What is Causal Effect Estimation?
2. Backdoor Adjustment
3. Treatment Effect
4. Model: S-Learner
5. Model: T-Learner
6. Metrics

65



Causal Effect Estimation

X Y

If I apply a particular treatment on X, what would its effect be on Y?

66



Eliminating confounding effects through conditioning…

67

A B
C

vaccine

age=20

age=40

age=60

vaccine

mortality

VS.

A B
C

mortality



More generally…
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X Y



More generally…
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X Y

backdoor



More generally…
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X Y

backdoor

confounder



More generally…
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X Y

backdoor

confounder



Key Concept: Treatment Effect

Individual Treatment Effect (ITE)
● The effect of treatment on a single unit

○ ITEi = Yi(1) - Yi(0)
● ITE(Emily) = 0 - 1 = -1

72



Key Concept: Treatment Effect

Individual Treatment Effect (ITE)
● The effect of treatment on a single unit

○ ITEi = Yi(1) - Yi(0)
● ITE(Emily) = 0 - 1 = -1

Conditional Average Treatment Effect (CATE)
● The average effect given a subgroup or covariates X:

○ CATE(X) = E[Y(1) - Y(0) | X]
● CATE(X = 0) = [(1-0)*6  + (0-0)]/7 = 0.85

73



Key Concept: Treatment Effect

Individual Treatment Effect (ITE)
● The effect of treatment on a single unit

○ ITEi = Yi(1) - Yi(0)
● ITE(Emily) = 0 - 1 = -1

Conditional Average Treatment Effect (CATE)
● The average effect given a subgroup or covariates X:

○ CATE(X) = E[Y(1) - Y(0) | X]
● CATE(X = 0) = [(1-0)*6  + (0-0)]/7 = 0.85

Average Treatment Effect (ATE)
● The overall average effect across the population:

○ ATE = E[Y(1) - Y(0)]
● ATE = [(1 − 0) * 7 + (1 − 1) * 2 + (0 − 0)] / 10 = 0.3

74



Common Assumptions for Causal Inference

● Stable Unit Treatment Value Assumption (SUTVA)
○ No interference among units.

■ Violation: social network, treated units may more likely interact with other 
treated units. Spillover effect.

○ Treatment gives the same outcome under the same conditions.
■ Also known as consistency.

● Positivity
● Unconfoundedness (also known as Ignorability)

75



Common Assumptions for Causal Inference

● Stable Unit Treatment Value Assumption (SUTVA)
○ No interference among units.

■ Violation: social network, treated units may more likely interact with other 
treated units. Spillover effect.

○ Treatment gives the same outcome under the same conditions.
■ Also known as consistency.

● Positivity
○ Have samples in both control and treated groups.
○ 0 < P(T = 1|X) < 1
○ Violation: all samples are assigned to a single group.

● Unconfoundedness (also known as Ignorability)
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Common Assumptions for Causal Inference

● Stable Unit Treatment Value Assumption (SUTVA)
○ No interference among units.

■ Violation: social network, treated units may more likely interact with other 
treated units. Spillover effect.

○ Treatment gives the same outcome under the same conditions.
■ Also known as consistency.

● Positivity
○ Have samples in both control and treated groups.
○ 0 < P(T = 1|X) < 1
○ Violation: all samples are assigned to a single group.

● Unconfoundedness
○ Also known as Ignorability
○ All confounders are observed. No unmeasured confounders.
○ Latent confounders can’t be controlled directly, leave the backdoor path open.

77



Models: Meta Learner - T-Learner

78

T Y

X
1

, X
2, …

 

● T: binary treatment, vaccine
● Y: outcome, mortality rate
● X = {X

1
, X

2, …
}: confounders, 

such as age, health, etc. 

Key idea:

● Control for confounders (X
1

, X
2

, …) to block the backdoor path.

● Separate datasets to control (T=1) and treated (T=0) groups, and 

fit a corresponding model.

● Full flexibility on the choice of models



Models: Meta Learner - T-Learner

Steps

1. Choose any regression model f (e.g., linear model, random 

forest, neural net). 

79

T X Y

0

1

1

0

…



Models: Meta Learner - T-Learner

Steps

1. Choose any regression model f (e.g., linear model, random 

forest, neural net). 

2. Split training data by treatment T.

a. Fit Y
1

 = f
1

(X) on samples with T =1

b. Fit Y
0

 = f
0

(X) on samples with T =0

80

T X Y

0

1

1

0

…

T X Y

0

0

…

T X Y

1

1

…

Y = f
1

(X)Y = f
0

(X)

Training set



Models: Meta Learner - T-Learner

Steps

1. Choose any regression model f (e.g., linear model, random 

forest, neural net). 

2. Split training data by treatment T.

a. Fit Y
1

 = f
1

(X) on samples with T =1

b. Fit Y
0

 = f
0

(X) on samples with T =0

3. On the test set
a. Create two copies of testing dataset with the same 

confounders X.
b. Set T = 1 in one copy, T = 0 in the other.
c. Use Y

1
 to predict T=1, and Y

0
 to predict T= 0

4. Estimate:
a.  ATE = E

X
[ f

1
(T=1, X) - f

0
(T=0, X)]

b. CATE(X) = E[ f
1

(T=1, X) - f
0

(T=0, X)]
c. ITE = f

1
(T=1, X

i
) -  f

0
(T=0, X

i
)

81

T X Y

0

1

1

0

…

T X

0

0

0

0

…

T X

1

1

1

1

…

Testing set



Metrics
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ATE, CATE
● Compare with ground truth directly (synthetic data).
● On real-world data, we often assume the test set is balanced across treatment groups to 

approximate these comparisons.

ITE

● Can't observe both treated and untreated outcomes for the same individual.

● Direct evaluation of ITE is impossible on real-world data.



Metrics
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Uplift
 Value

# Samples

Cumulative 
Uplift

Uplift Curve

● Rank individuals by predicted ITE, from highest to 

lowest.

● Partition the dataset into percentiles (e.g., deciles) 

by rank (g
1

, g
2

, …).

● In each group, compute the observed uplift:  

○ Uplift = E[Y | T = 1, g] - E[Y | T = 0, g]

● Plot cumulative uplift (Y-axis) vs. % of population 

targeted (X-axis) → Qini curve.

● Uplift Value:

○ Area between model’s Uplift curve and 

random targeting line.

○ Standardized (by sample count) uplift curve 

is called Qini curve.



Other Causal Effect Models

Matching  [13]

● Compare samples in treated and control groups with similar characteristics.  

● Mimics a randomized experiment by balancing covariates.  

IPW (Inverse Probability Weighting)  [15]

● Reweights individuals to create a balanced virtual population.  

● Especially useful when treated and untreated groups are very different.

Meta-Learners  [16]

● Use machine learning to estimate outcomes under treatment and control separately.  

● Adaptable to flexible models and heterogeneous effects.  

Causal Forests  [17]

● Tree-based method that learns how treatment effects vary across individuals.  

● Automatically finds subgroups with different effects.
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Causal Discovery

● Constraint-based: PC, FCI
● Score-based: GES, FGES
● Functional: LiNGAM, ANM
● Optimization-based: NOTEARS, 

DAG-GNN
● Temporal: PCMCI+, VAR-LiNGAM

Causal Effect Estimation

● Regression-based: Linear regression, GLMs
● Matching: Propensity score, Mahalanobis
● IPW (Inverse Probability Weighting)
● Meta-learners: S-Learner, T-Learner, X-Learner, 

R-Learner
● Causal Forests
● DML (Double Machine Learning)

Recap and Resources
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Hands-On 
Benchmarking
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Installing
CausalBench
Python Package

89

$ pip install causalbench-asu

Prerequisites
● Python (>= 3.10)

● pip

Additional requirements for this 
tutorial
● gcastle

Getting started
● https://tutorial.causalbench.org/

● Google Colab Notebook (Jupyter)



Using
CausalBench
Python Package
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Next Steps

● Create an account on 

https://causalbench.org/

● Use credentials for first use of 

CausalBench Python package

Credentials required
Email: user@example.com
Password: 🔑



CausalBench: Modules
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CausalBench: 
Modules (Dataset) Config file:

● Metadata

○ name, description, and URL

● Names and metadata of data files

● Structure of data files

○ Number of rows

○ Columns — number, name, 

data type, description

○ Index — time, space, etc.
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CausalBench: 
Modules (Dataset) Data file:

● Tabular data

● Data formats

○ Spatio-temporal Data

○ Spatio-temporal Graph

● Helper functions

○ Static tabular data →
Spatio-temporal data

○ Static adjacency matrix →
Spatio-temporal graph
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CausalBench: Modules (Dataset) – Data Formats
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CausalBench: Modules (Dataset) – Data Formats
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CausalBench: 
Modules (Model)

96

Config file:

● Metadata

○ name, description, and URL

● Name and metadata of Python file

● Task

○ Causal Discovery

○ Causal Inference, etc.

● Hyperparameters

○ data type, description, and 

default value



CausalBench: 
Modules (Model)
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Python file:

● Function to take accept inputs 

and provide outputs

○ Comply with function 

signature specified by task



CausalBench: 
Modules (Metric)

98

Config file:

● Metadata

○ name, description, and URL

● Name and metadata of Python file

● Task

○ Causal Discovery

○ Causal Inference, etc.

● Hyperparameters

○ data type, description, and 

default value

Same structure as model



CausalBench: 
Modules (Metric)
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Python file:

● Function to take accept inputs 

and provide outputs

○ Comply with function 

signature specified by task

Same structure as model



CausalBench: Modules 
(Benchmark Context)
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Config file:

● Metadata

○ name, description, and URL

● Task

○ Causal Discovery

○ Causal Inference, etc.

● Datasets

○ Dataset IDs and versions

○ Data files to task mapping



CausalBench: Modules 
(Benchmark Context)
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Config file:

● Models

○ Model IDs and versions

○ Model hyperparameters

(if not using default values)

● Metrics

○ Metric IDs and versions

○ Metric hyperparameters

(if not using default values)



CausalBench: Modules 
(Benchmark Run)
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Config file:

● Reference to Benchmark Context

○ Benchmark Context ID and 

version

● Platform information

○ Operating System

○ CPU

○ GPU

○ Memory

○ Disk



CausalBench: Modules 
(Benchmark Run)

103

Config file:

● Scenarios

○ Consists of 1 dataset, 1 

model, and multiple metrics

○ Dataset

■ ID and version

○ Model and Metrics

■ IDs and versions

○ Output / results

○ Profiling information

■ Execution time

■ Hardware utilization

■ Software packages



End of Deck 3
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Agenda for today’s 
Hands-on Tutorial

105

tutorial.causalbench.org

08:00-08:05 Introduction to the Tutorial

08:05-08:25 Introduction to CausalBench

08:25-08:55 Introduction to Causality and Causal 

Learning

08:55-09:30 Delve into the CasualBench framework to 

create and execute benchmarks

09:30-10:00 Coffee break

10:00-10:10 Shorter introduction to CausalBench

10:10-10:35 Explore published benchmarks and 

reproduce experiments

10:35-10:50 Gain further insights using Causal 

Explanation and Recommendations

10:50-11:00 CausalBench: What's Next?

See you back at 10am!



Ahmet Kapkiç *
Pratanu Mandal *
Abhinav Gorantla *
Shu Wan
Ertuğrul Çoban
Dr. Paras Sheth
Dr. Huan Liu *
Dr. K. Selçuk Candan

CausalBench: Causal Learning
Research Streamlined

tutorial.causalbench.org

106

This research is funded by NSF Grant 2311716, "CausalBench: A Cyberinfrastructure for 
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● CausalBench is a benchmarking 

platform for Causal Learning 

research.

● Goals:

○ Promoting universal adoption of 

standard datasets, metrics and 

procedures for causal learning.

○ Facilitating collaboration.

○ Trustable and reproducible 

benchmarking.

○ Fair and flexible comparison of 

models.

What is CausalBench?
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CausalBench: Use Scenario #1
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Data, model, metric
contributor



CausalBench: Use Scenario #2
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Data, Model, Metric 
Explorer



CausalBench: Use Scenario #3
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Benchmark executor



What is a Benchmark?
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CausalBench: Use Scenario #3
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Benchmark executor



Sample benchmark output
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Permanently indexed (and citable) 
in Zenodo

Uploaded and stored in CausalBench

- Includes
- Model
- Dataset
- Hardware/software profiling
- Accuracy metrics



CausalBench: Use Scenario #4

114

Benchmark explorer



CausalBench: Explaining benchmark results

115

● Sample question:
○ Why does VAR-LiNGAM have better accuracy with time_sim but lower training 

time in this benchmark?

■ Did the hyperparameters play a role?

■ Could it be because of the dataset size?

■ Is there something else?

● These questions can be answered by generating explanations using CausalBench.



What is Causal Learning?

Causal Learning answers the question of “Why” and describe the relationship between

● a cause (an action, event, or condition), and 
● its effect (an outcome that results from it).

116

What’s the effect of the vaccine on a 
patient’s health?

How do socioeconomic status, nutrition, study 
time, and, sleep, influence student GPA?
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Two Tasks in Causal Learning

What’s the effect of the vaccine on 
a patient’s health?

How do socioeconomic status, nutrition, 
study time, and, sleep, influence student 
GPA?

Causal Discovery
We don’t know what causes what. We 
want to uncover the structure — who 
influences whom.
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Two Tasks in Causal Learning

What’s the effect of the vaccine on 
a patient’s health?

How do socioeconomic status, nutrition, 
study time, and, sleep, influence student 
GPA?

Causal Discovery
We don’t know what causes what. We 
want to uncover the structure — who 
influences whom.

Causal Effect Estimation
Knowing  cause and effect, want to 
estimate how much effect one variable 
has on another.



Quick Recap: 
Hands-On 
Benchmarking
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Benchmarking using CausalBench

● Static Causal Discovery

● Create and publish:

○ Dataset

○ Model

○ Metric

○ Benchmark Context

● Execute the Benchmark Context

● Publish generate Benchmark Run

● Explore the published modules on 

the CausalBench website 



Agenda for today’s 
Hands-on Tutorial

120

tutorial.causalbench.org

08:00-08:05 Introduction to the Tutorial

08:05-08:25 Introduction to CausalBench

08:25-08:55 Introduction to Causality and Causal 

Learning

08:55-09:30 Delve into the CasualBench framework to 

create and execute benchmarks

09:30-10:00 Coffee break

10:00-10:10 Shorter introduction to CausalBench

10:10-10:35 Explore published benchmarks and 

reproduce experiments

10:35-10:50 Gain further insights using Causal 

Explanation and Recommendations

10:50-11:00 CausalBench: What's Next?



CausalBench: Causal Learning
Research Streamlined

CausalBench BenchmarkingCausality

tutorial.causalbench.org
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Hands-On 
Benchmarking

This research is funded by NSF Grant 2311716, "CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for 
Efficacy, Reproducibility, and Scientific Collaboration", and NSF Grants #2230748, "PIRE: Building Decarbonization via 

AI-empowered District Heat Pump Systems", #2412115, "PIPP Phase II: Analysis and Prediction of Pandemic Expansion 
(APPEX)" and USACE #GR40695, "Designing nature to enhance resilience of built infrastructure in western US landscapes".



Quick Recap:
Installing 
CausalBench
Python Package

122

$ pip install causalbench-asu

Prerequisites
● Python (>= 3.10)

● pip

Additional requirements for this 
tutorial
● gcastle

Getting started
● https://tutorial.causalbench.org/

● Google Colab Notebook (Jupyter)



Quick Recap:
Using
CausalBench
Python Package
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Next Steps

● Create an account on 

https://causalbench.org/

● Use credentials for first use of 

CausalBench Python package

Credentials required
Email: user@example.com
Password: 🔑



CausalBench Designer

● https://designer.causalbench.org/

● Design a Benchmark Context using GUI

● Zero coding environment
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CausalBench Designer

Let’s design a Benchmark Context!

125

● Task:
○ Static Causal Discovery

● Datasets:
○ Abalone
○ Sachs

● Models:
○ GES
○ PC

● Metrics:
○ Accuracy
○ Precision
○ Recall
○ F1-score
○ Structural Hamming 

Distance (SHD)



CausalBench: Reproducibility

How can we reproduce someone else’s benchmark?

● Benchmark Context:

○ Module ID: 19

○ Version: 1
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CausalBench: Transparency

Provenance of public Benchmark Runs

127

Complete
● Should store any information 

collected during benchmarking

Available
● Anyone should be able to 

access and cite

Permanent
● Should always be available 

once made public

● Cannot be retracted

Immutable
● Prevent changes

● Original state is always 

preserved



CausalBench: Transparency

Zenodo
● Public Benchmark Runs are published to Zenodo

● All results and profiling information are recorded

● Digital Object Identifier (DOI) is assigned

● An immutable URL is generated

● Can be cited for future research
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CausalBench: Explanation

● Rich corpus of benchmark data at our disposal

● What causal relationships can we extract from the benchmark runs?

● Potential questions:

○ How does CPU affect the execution time?

○ How does a hyperparameter affect the F1 score?

…

● Causal Explanation attempts to answer such questions
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CausalBench: Explanation

● Causal graph from domain knowledge

● Causal effect estimation — estimate strengths of edges for a target

● Rank causes by the magnitude of their causal strength on the target

130

d → Dataset

m → Model

h → Hyperparameter

s → System configuration

S → System profiling data

A → Accuracy metric

T → Execution time



CausalBench: Explanation
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}



CausalBench: Recommendation

● Can we recommend more causally meaningful experiments?

● Causal Explanation provides key insights — exploit this!

● Key Idea:

○ Particular cause has more effect on a target

○ Further exploration of this cause might yield more granular insights

○ Recommend more granular experiments for this cause
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CausalBench: Recommendation

● Causally informed space filling 

strategy

● Causes that have larger impacts 

on the target are more finely 

experimented

● Avoid new experiments that are 

close to existing benchmark runs

133

Effect of Cause A is greater than Cause B



CausalBench: Recommendation

134

}



CausalBench: Recommendation - Hands On

Let CausalBench to explain and recommend some benchmarks for you!

● Filter by
○ Context ID: 10

○ Context Version: 2

● Explanation
○ By: Time Elapsed 

○ PCMCIPlus: 

■ alpha.Min: 0.01

■ alpha.Max: 0.8

■ max_conds_dim.min: 1

■ max_conds_dim.min: 30

● Analyze! 135



End of Deck 4

Any Questions?
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CausalBench: What’s Next?

Going public

● Open Source

● Workshops

● Creating a research community

…
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Conclusions

● Benchmarking: Problems

● Causality

● CausalBench

● Benchmarking: 

○ Analyzing

○ Improving
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Thank you!

Any Questions?

CausalBench
(Application)

Docs/Github
(Contribution)

KDD Tutorial
(Usage)

Further questions? Feedbacks? Want to use CausalBench?
support@causalbench.org
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mailto:support@causalbench.org

