CausalBench: Causal Learning Research Streamlined

Ahmet Kapkiç *
Pratanu Mandal *
Abhinav Gorantla *
Shu Wan
Ertuğrul Çoban
Dr. Paras Sheth
Dr. Huan Liu *
Dr. K. Selçuk Candan

OpenML

tutorial.causalbench.org

This research is funded by NSF Grant 2311716, "CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration", and NSF Grants #2230748, "PIRE: Building Decarbonization via Al-empowered District Heat Pump Systems", #2412115, "PIPP Phase II: Analysis and Prediction of Pandemic Expansion (APPEX)" and USACE #GR40695, "Designing nature to enhance resilience of built infrastructure in western US landscapes".

Standardized
Evaluation
(Benchmarking)

Support for
Causal
Learning
Algorithms

^{*} In-person presenters

The Team

Ahmet Kapkiç Ph.D. Student

Pratanu Mandal Ph.D. Student

Abhinav Gorantla M.S. Student

Shu Wan Ph.D. Student

Ertuğrul Çoban Ph.D. Student

Dr. Paras Sheth (recent graduate – congrats!)

Dr. Huan Liu Regents Professor Arizona State University

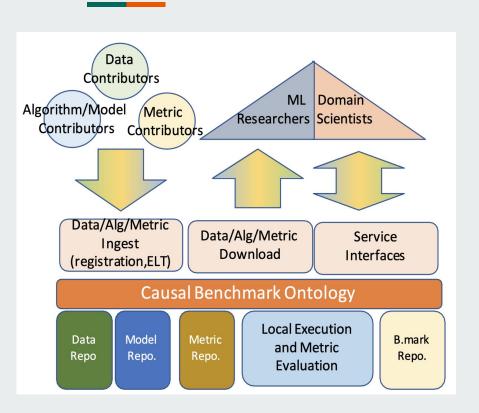
Co-Principal Investigator

Dr. K. Selçuk CandanProfessor
Arizona State University

Principal Investigator

^{*} In-person presenters

What is CausalBench?

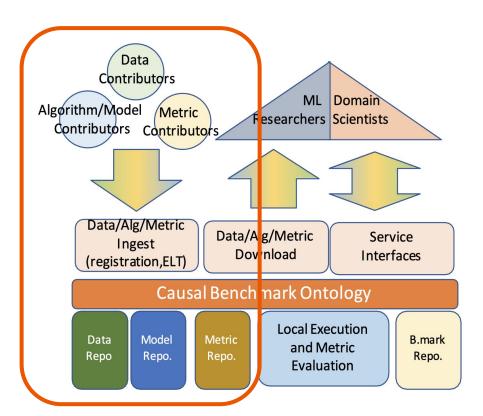


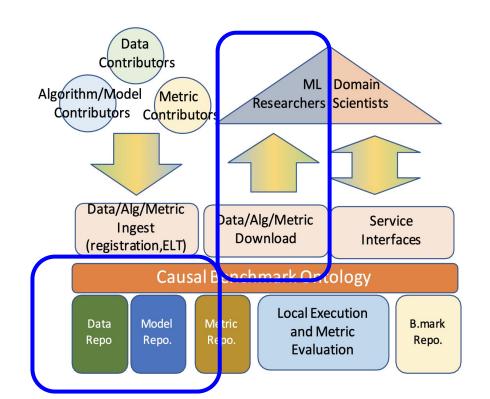
• CausalBench is a benchmarking platform for Causal Learning research.

Goals:

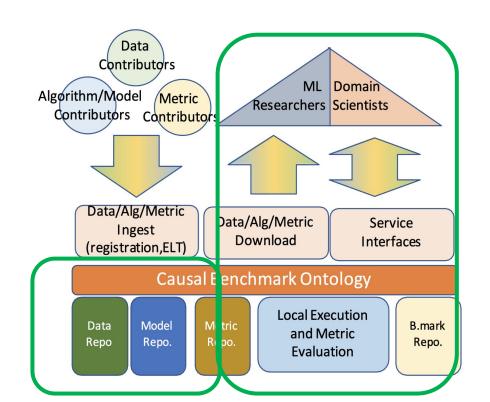
- Promoting universal adoption of standard datasets, metrics and procedures for causal learning.
- o Facilitating collaboration.
- Trustable and reproducible benchmarking.
- Fair and flexible comparison of models.

Data, model, metric contributor



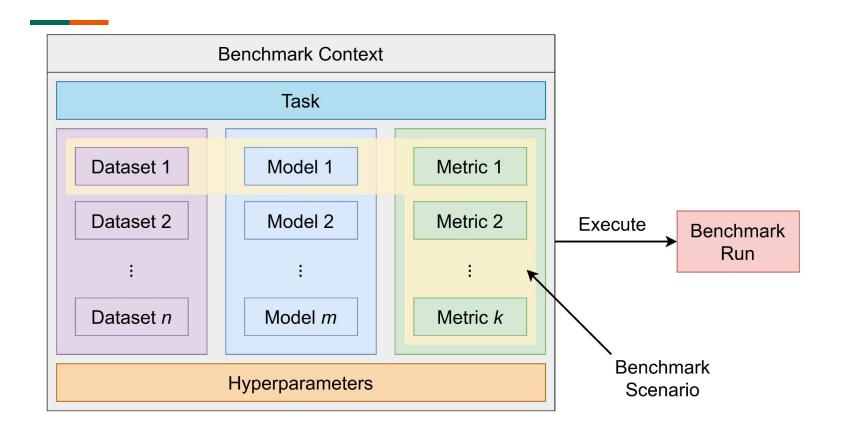


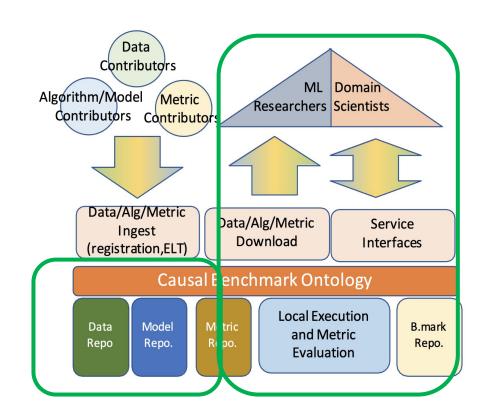
Data, Model, Metric Explorer



Benchmark executor

What is a Benchmark?



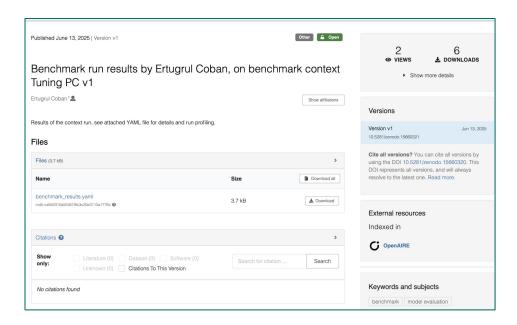


Benchmark executor

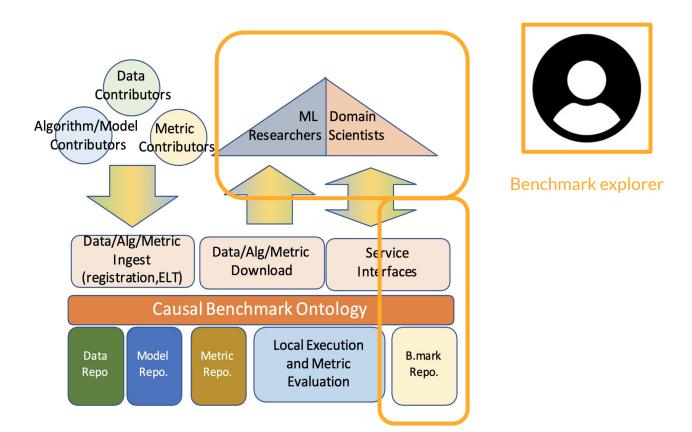
Sample benchmark output

- Includes
 - Model
 - Dataset
 - Hardware/software profiling
 - Accuracy metrics

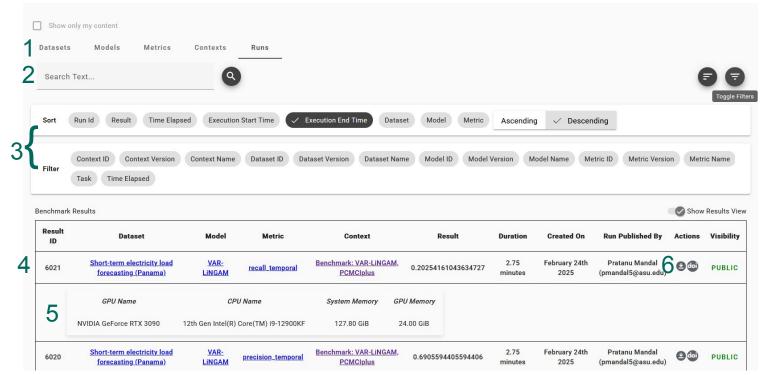
Uploaded and stored in CausalBench



Permanently indexed (and citable) in Zenodo



CausalBench: Exploring benchmark results



- 1. Repository selector
- 2. Search Function
- 3. Filter/Sort
- 4. Detail overview
- 5. On-demand details
- 6. Download/Cite

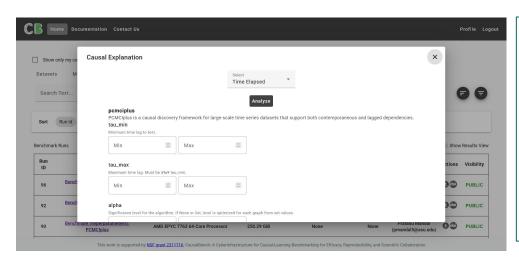
CausalBench: Explaining benchmark results

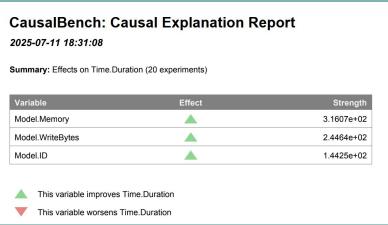
Result ID	Dataset	Model	Metric	Context	Result	Duration	Created On	Run Published By	Actions	Visibility
630	time_sim	<u>VAR-</u> <u>LiNGAM</u>	accuracy_temporal	Benchmark: VAR-LINGAM, PCMCIplus	0.9375	8.31 seconds	February 16th 2025	Abhinav Gorantla (agorant2@asu.edu)	26	PUBLIC
640	Short-term electricity load forecasting (Panama)	VAR- LINGAM	accuracy_temporal	Benchmark: VAR-LINGAM, PCMCIplus	0.568359375	4.67 minutes	February 16th 2025	Abhinav Gorantla (agorant2@asu.edu)	26	PUBLIC

• Sample question:

- Why does VAR-LiNGAM have better accuracy with time_sim but lower training time in this benchmark?
 - Did the hyperparameters play a role?
 - Could it be because of the dataset size?
 - Is there something else?
- These questions can be answered by generating explanations using <u>CausalBench</u>.

CausalBench: Explaining benchmark results

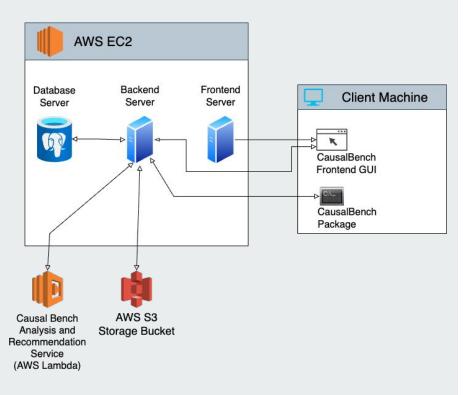




Sample question:

- Why does VAR-LiNGAM have better accuracy with time_sim but lower training time in this benchmark?
 - Did the hyperparameters play a role?
 - Could it be because of the dataset size?
 - Is there something else?
- These questions can be answered by generating explanations using <u>CausalBench</u>.

Components of CausalBench



- CausalBench contains three components:
 - The python package handles the process of benchmarking.
 - The web backend receives the results from the python package and publishes it to zenodo.
 - The web frontend provides users with a GUI to browse benchmark runs, datasets, models, metrics and contexts already published to <u>causalbench.org</u>.

Agenda for today's Hands-on Tutorial

tutorial.causalbench.org

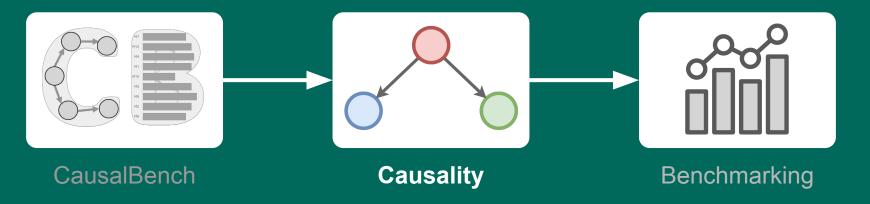
08:00-08:05	Introduction to the Tutorial
08:05-08:25	Introduction to CausalBench
08:25-08:55	Introduction to Causality and Causal Learning
08:55-09:30	Delve into the CasualBench framework to create and execute benchmarks
09:30-10:00	Coffee break
10:00-10:10	Shorter introduction to CausalBench
10:10-10:35	Explore published benchmarks and reproduce experiments
10:35-10:50	Gain further insights using Causal Explanation and Recommendations
10:50-11:00	CausalBench: What's Next?

End of Deck 1

Any Questions?

CausalBench: Causal Learning Research Streamlined

Understanding Causality



This research is funded by NSF Grant 2311716, "CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration", and NSF Grants #2230748, "PIRE: Building Decarbonization via Al-empowered District Heat Pump Systems", #2412115, "PIPP Phase II: Analysis and Prediction of Pandemic Expansion (APPEX)" and USACE #GR40695, "Designing nature to enhance resilience of built infrastructure in western US landscapes".

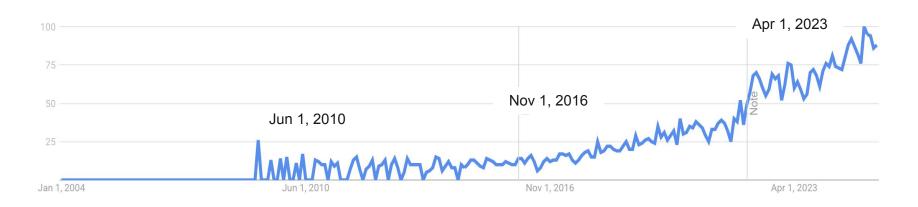
Causal Learning: Why it matters?

- 1. What is Causal Learning?
- 2. Why does Causal Learning matter?
- 3. Two Tasks in Causal Learning.

Interests in "Causal Learning"

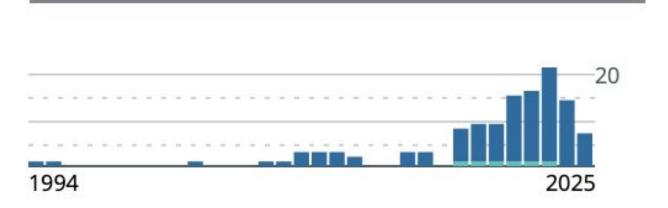
Google Trends for the term "Causal Learning"

Interest over time ?



Interests in "Causal Learning"

of papers published at KDD with the term "causal" in the title



What is Causal Learning?

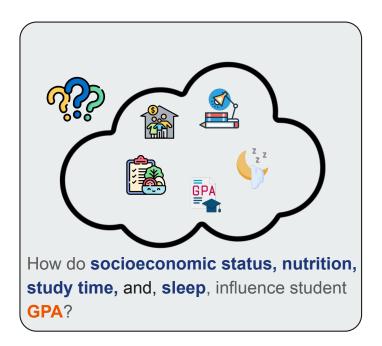
Causal Learning answers the question of "Why" and describe the relationship between

- a cause (an action, event, or condition), and
- its **effect** (an outcome that results from it).

How do socioeconomic status, nutrition, study time, and, sleep, influence student GPA?

What's the effect of the **vaccine** on a patient's **health?**

Two Tasks in Causal Learning

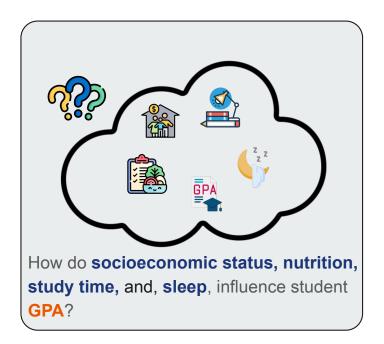


Causal Discovery

We don't know what causes what. We want to uncover the structure — who influences whom.

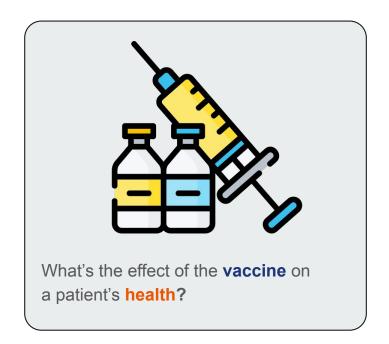
What's the effect of the **vaccine** on a patient's **health?**

Two Tasks in Causal Learning



Causal Discovery

We don't know what causes what. We want to uncover the structure — who influences whom.

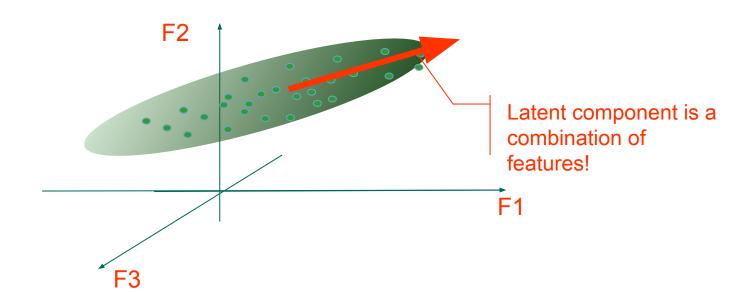


Causal Effect Estimation

Knowing cause and effect, want to estimate how much effect one variable has on another.

So...why does causal learning matter?

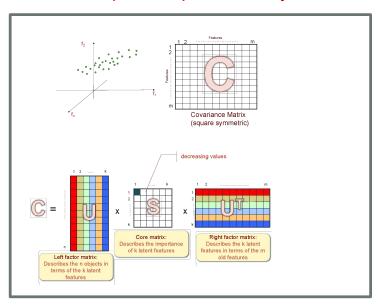
- Traditional data analysis and retrieval is based on statistical/probabilistic cues underlying the data
 - •e.g. dimensionality reduction often relies on identifying and eliminating redundancies in terms of correlation or covariance



So...why does causal learning matter?

Examples range from simple matrix decomposition (e.g., PCA) to more complex DNNs

Principal Component Analysis



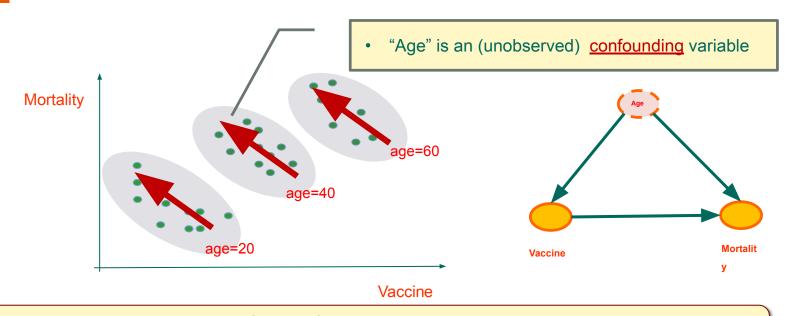
Stacked Convolution + RELU Layers Stacked Convolution + RELU Layers Layers Layers Stacked Convolution + RELU Layers Layers Layers Stacked Convolution + RELU Layers Layers Layers Layers Layers Layers Stacked Convolution + RELU Layers Lay

Problem: this approach does not always make sense!



e.g. Simpson's paradox

Problem: this approach does not always make sense!



 Data analysis without accounting for confounding variables will result in wrong conclusions...

Key questions..

- Q1: Can we obtain causal knowledge (discover the causal graph) from observations and answer causal queries?
 - Can we analyze observations to discover underlying <u>causally-meaningful</u> patterns and relationships between input parameters, key events/interventions, and outcomes?
- Q2: Can we compute the probability distribution of Y after we intervene on X denoted as P(Y | do(X = x))?
- Q3: If we are given a-priori causal knowledge, can we leverage this in our data analysis or in explaining our results?
 - Can we support <u>causally-informed</u> explanations and <u>root-cause</u> analysis?
 - Can we support <u>what-if</u> analysis and optimize for different outcomes?
 - Can we <u>transfer knowledge</u> and models across <u>causally-similar</u> systems?
 - Can we make <u>causally-robust</u> predictions and recommendations?

Causal Model Frameworks

A Causal Model Framework helps us

- represent how variables influence each other
- make predictions under interventions, not just observations
- go beyond correlation to answer "why" and "what if" questions



Judea Pearl

Donald Rubin

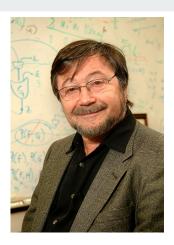
Causal Model Frameworks

A Causal Model Framework helps us

- represent how variables influence each other
- make predictions under interventions, not just observations
- go beyond correlation to answer "why" and "what if" questions

There is no single causal model — different frameworks suit different goals:

- Pearl's Causal Model: Popular in computer science.
- Rubin's Causal Model: Popular in statistics, econometrics.
- and more...



Judea Pearl

Donald Rubin

Causal Algorithms

Causal Discovery

- Constraint-based: PC_[1], FCI_[2]
- Score-based: GES_[3], FGES_[4]
- Functional: LiNGAM_[5], ANM_[6]
- Optimization-based: NOTEARS_[7], DAG-GNN_[8]
- Temporal: PCMCI+_[9], VAR-LiNGAM_[10]

Highlighted algorithms are supported by **CausalBench** out-of-box.

Causal Effect Estimation

- Regression-based: Linear regression_[11], GLMs_[12]
- Matching: Propensity score_[13], Mahalanobis_[14]
- IPW (Inverse Probability Weighting)_[15]
- Meta-learners_[16]: S-Learner, T-Learner, X-Learner
- Causal Forests_[17]
- DML (Double Machine Learning)_[18]

Highlighted algorithm is used for causal explanation in **CausalBench**.

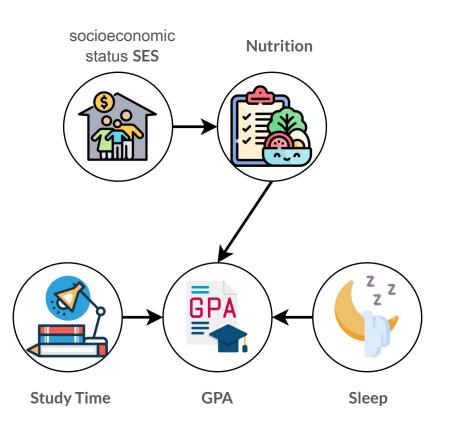
Basics of Causal Graphs

- 1. What's a Causal Graph?
- Causal Graph and Data Dependencies
- 3. D-Separation

Causal graph: nodes and edges

We use a Causal Graph G = (V, E) to describe the causal relationships between variables.

A common assumption is that causal graphs are acyclic.



Key concepts - Mediator/Chain

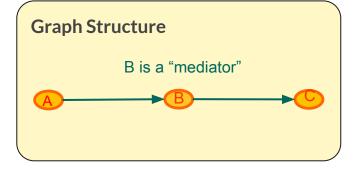
Real World Example

A: Sleep time

B: Wake-up time

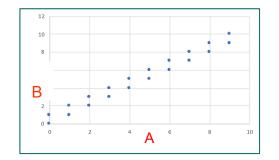
C: Arrival time at

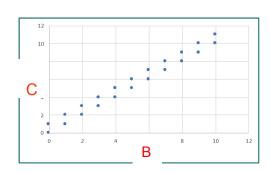
work

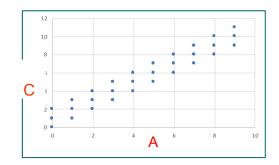


Data (in)dependencies

- A and B are dependent
- B and C are dependent
- A and C are dependent







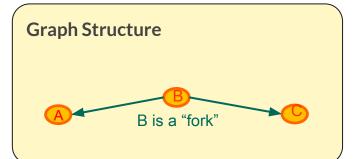
Key concepts - Fork/Common Cause

Real World Example

A: Vaccine

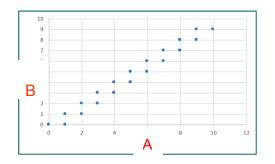
B: Age

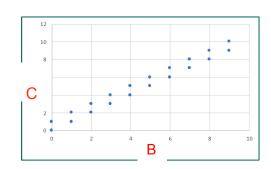
C: Mortality

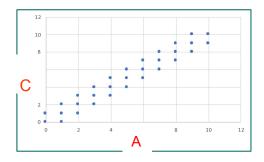


Data (in)dependencies

- A and B are dependent
- B and C are dependent
- A and C are dependent







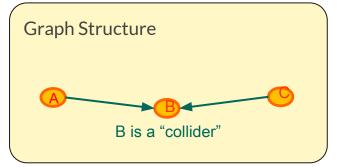
Key concepts - Collider/V-structure/Common Effect

Real World Example

A: Good Looking

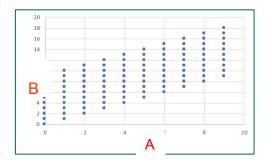
B: Award

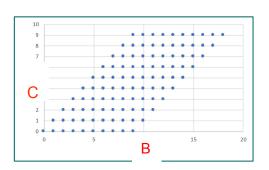
C: Acting Ability

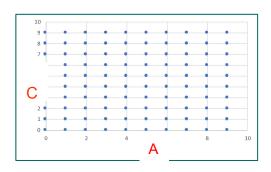


Data (in)dependencies

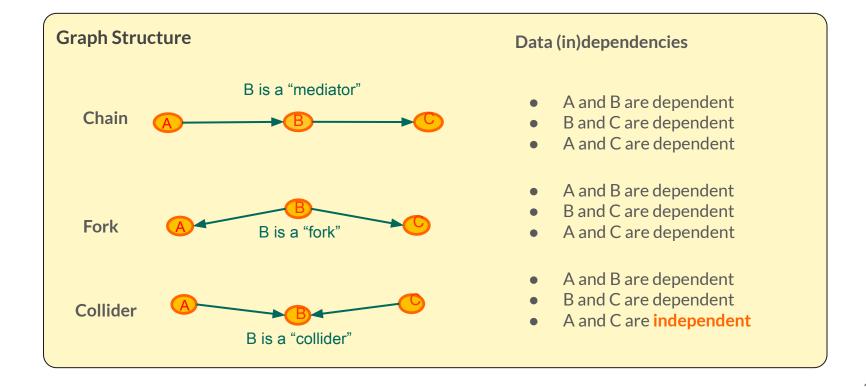
- A and B are dependent
- B and C are dependent
- A and C are independent





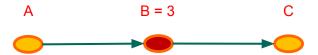


Summary - (in)dependencies

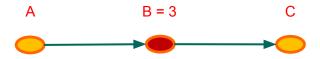


Conditioning and Conditional Independence

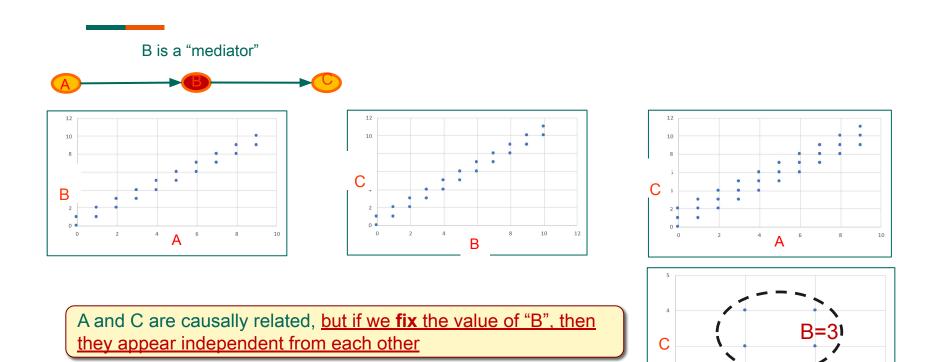
• Conditioning: set a variable to a fixed value. P(A, C | B = 3)



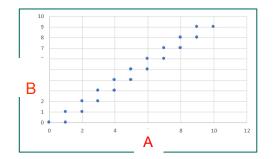
• Conditional Independence: Two variables C and A are conditionally independent given B $P(A, C \mid B = 3) = P(A \mid B = 3)P(C \mid B = 3)$?

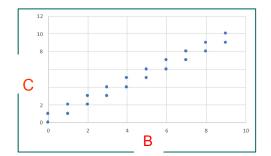


Key concepts - Mediator/Chain

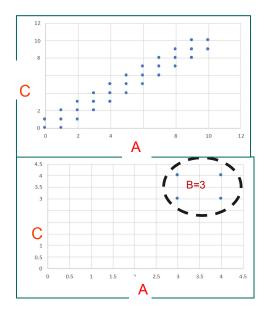


Key concepts - Fork



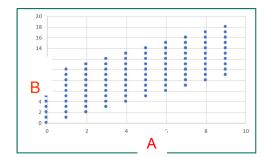


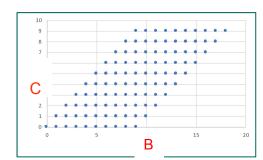
A and C are correlated, but if we fix the value of "B", then the correlation disappears



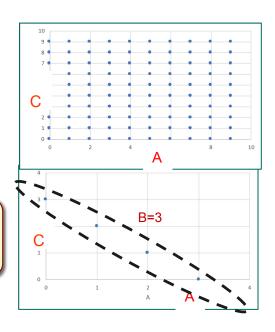
Key concepts - Collider

B is a "collider"

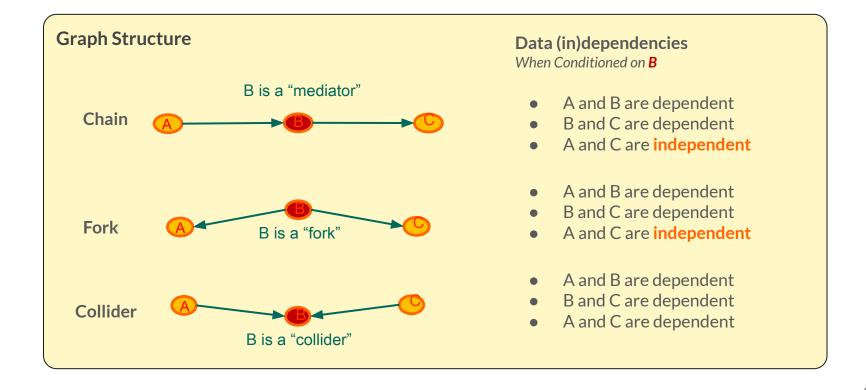




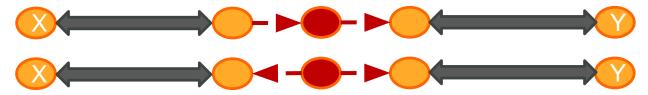
A and C are independent, but if we fix the value of "B", then A and C appears to be (negatively) correlated



Summary - (in)dependencies



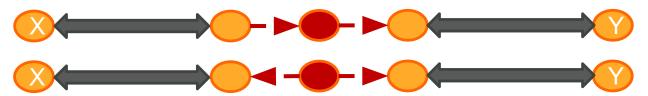
- A path in the causal graph is <u>blocked</u>[a] if
 - the path contains a **chain** or a **fork** that <u>has been conditioned</u>,



• the path contains a **collider** such that the collision node and its descendants <u>have not been conditioned</u>

A path in the causal graph is <u>blocked</u>[a] if

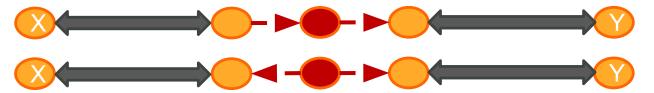
Conditioning erases evidence of the underlying causal relationships



O the path contains a **collider** such that the collision node and its descendants <u>have not been conditioned</u>

A path in the causal graph is <u>blocked</u>[a] if

Conditioning erases evidence of the underlying causal relationships

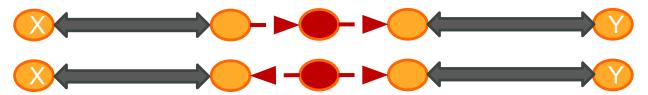


Conditioning unblocks the path and introduces spurious correlations

O the path contains a **collider** such that the collision node and its descendants <u>have not been conditioned</u>

A path in the causal graph is <u>blocked</u>[a] if

Conditioning erases evidence of the underlying causal relationships



Conditioning unblocks the path and introduces spurious correlations

O the path contains a **collider** such that the collision node and its descendants <u>have not been conditioned</u>

Let X, Y, Z be three sets of nodes in a causal graph G.

X and Y are d-separated given Z, if all path from X to Y through Z are blocked.

Task: Causal Discovery

- I. What is Causal Discovery?
- 2. Common Assumptions
- 3. Markov Equivalence Class
- 4. Model: PC Algorithm
- 5. Metrics

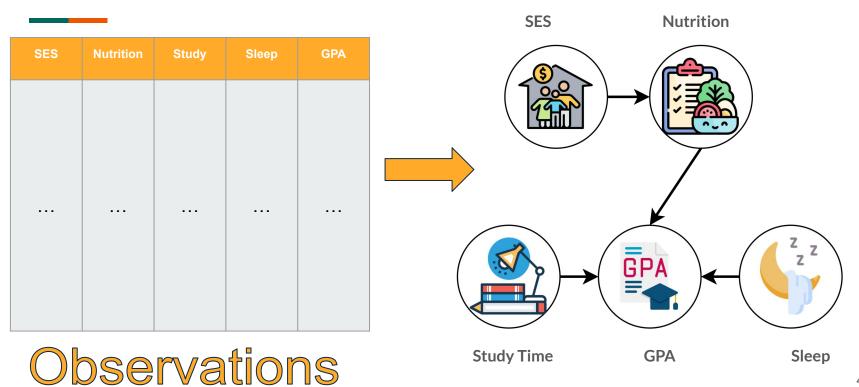
Where do causal graphs come from?

So, causal graph is a useful tool – but, where does it come from?

Option #1: Expert provided - Rare, Scarce

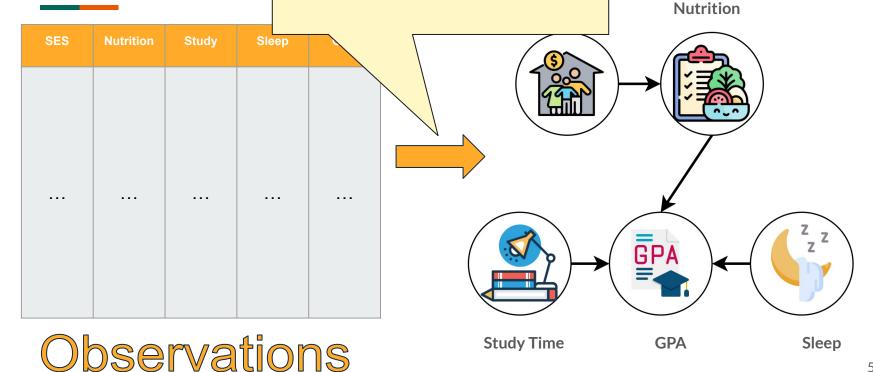
Option #2: Learned from observations - Causal Discovery!!!

Causal Discovery



Causal Discover

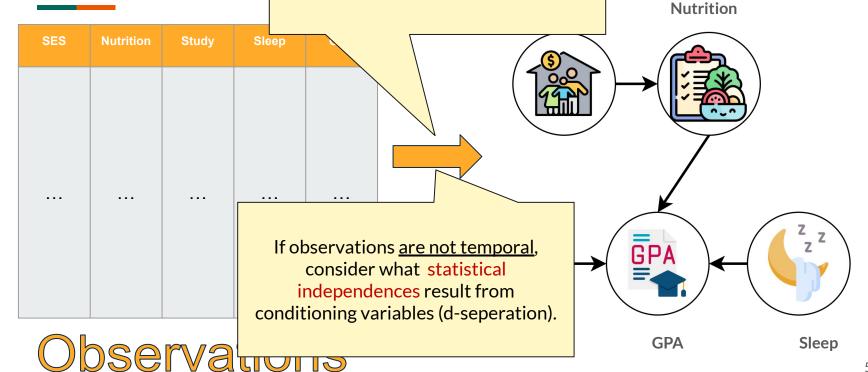
If observations <u>are temporal</u>, rely on whether one variable can be used to predict the other.



50

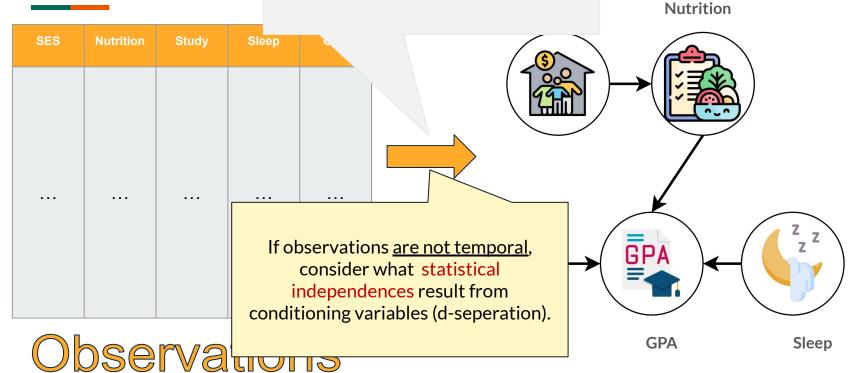
Causal Discover

If observations <u>are temporal</u>, rely on whether one variable can be used to <u>predict</u> the other.



Causal Discover

If observations <u>are temporal</u>, rely on whether one variable can be used to predict the other.

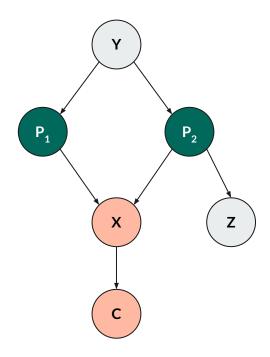


Common Assumptions

Markov Condition

- A variable is independent of non-descendents, given its parents.
- All conditional independencies in the graph are reflected in the dataset.

$$X\perp_G Y|Z\Rightarrow X\perp_D Y|Z$$



$$P(X | P_1, P_2, Y, Z) = P(X | P_1, P_2)$$

Common Assumptions

Markov Condition

- A variable is independent of non-descendents, given its parents.
- All conditional independencies in the graph are reflected in the dataset.

$$X\perp_G Y|Z\Rightarrow X\perp_D Y|Z$$

Faithfulness

- All conditional independencies in the data (D) are reflected in the graph structure.
- Conditional independence = d-separation.

$$X \perp_G Y | Z \Leftarrow X \perp_D Y | Z$$

Common Assumptions

Markov Condition

- A variable is independent of non-descendents, given its parents.
- All conditional independencies in graph reflected in dataset.

$$X\perp_G Y|Z\Rightarrow X\perp_D Y|Z$$

Faithfulness

- All conditional independencies in the data (D) are reflected in the graph structure.
- Conditional independence = d-separation.

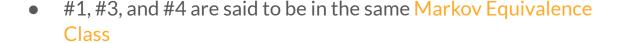
$$X \perp_G Y | Z \Leftarrow X \perp_D Y | Z$$

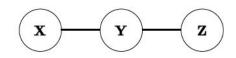
Sufficiency

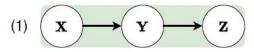
- All common causes are included among the observations.
- No missing variables, no latent variables.

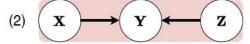
Warning! - conditional independence tests may not always be sufficient to distinguish causal graphs

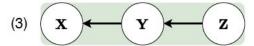
- In the example on the right,
 - Causal graphs #1, #3, and #4 have the same conditional independence structure
 - X dependent on Z
 - X independent from Z, only given Y
 - #2 has a different conditional independence structure
 - X independent from Z
 - X dependent on Z, given Y

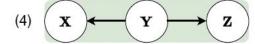






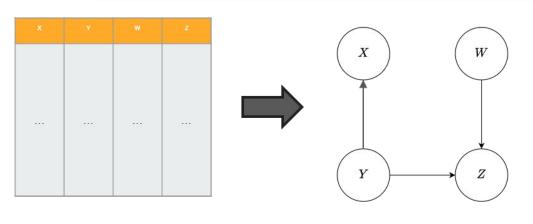


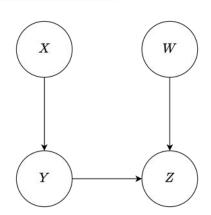




Key idea:

- Uses **conditional independence tests** to infer graph structure.
 - If variables X and Y are conditionally independent given <u>any</u> set of variables (excluding X and Y), there cannot be a direct causal edge between X and Y.



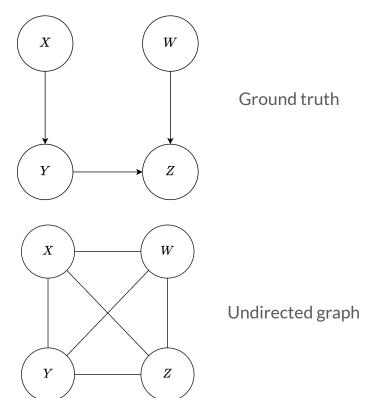


Discovered graph

Ground truth graph

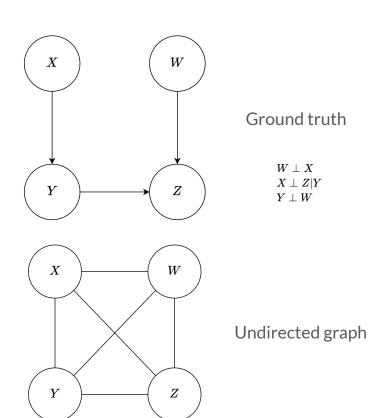
Steps:

1. Start with a fully connected undirected graph.



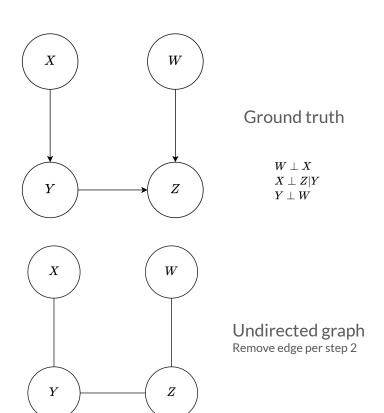
Steps:

- 1. Start with a fully connected undirected graph.
- 2. Consider conditioning set sizes m=1,2, ...
 - a. For each edge X->Y
 - Check if there is a set S of size m that renders X and Y statistically independent
 - C. If such a set, S, is found, then remove the edge from the graph



Steps:

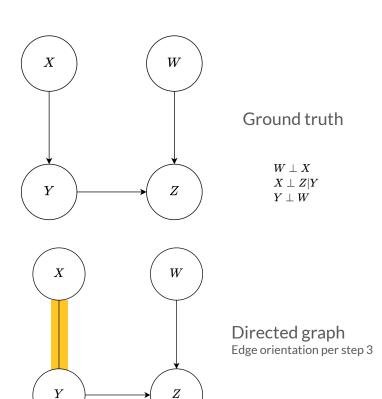
- 1. Start with a fully connected undirected graph.
- 2. Consider conditioning set sizes m=1,2, ...
 - a. For each edge X->Y
 - Check if there is a set S of size m that renders X and Y statistically independent
 - c. If such a set, S, is found, then remove the edge from the graph



Steps:

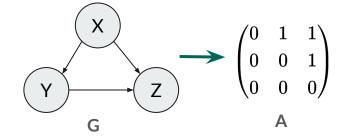
- 1. Start with a fully connected undirected graph.
- 2. Consider conditioning set sizes m=1,2, ...
 - a. For each edge X->Y
 - b. Check if there is a set S of size m that renders X and Y statistically independent
 - c. If such a set, S, is found, then remove the edge from the graph
- 3. Orient remaining edges based on collider rules
 - a. For each pair of non-neighbors, X and Y, with a common neighbor, Z
 - i. If Z is not in the separator set for X and Y, then we must have X -> Z <- Y

Can only discover up to a markov equivalent class (MEC)



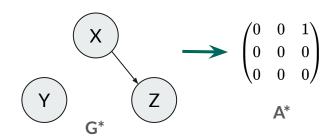
Metrics - Graph Structure

A Ground Truth Graph is required.



- Uses adjacency matrix to represent Causal Graphs.
 - Ground Truth Adjacency Matrix A,
 - Predicted adjacency matrix A*.

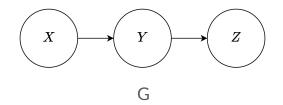
- Compare edges in the two causal graphs:
 - o Precision, Recall, F1, and more...
 - SHD (Structural Hamming Distance) = # insertions + # deletions + # flips.
 - In the example, $SHD(A, A^*) = 2$

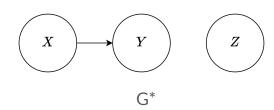


Metrics - Intervention behavior

- Intervention
 - like randomized experiments; not conditioning.
 - remove incoming edge, denoted by do(X).
- intervention distribution
 - \circ P(Y_i | do(X_i))
- Structural Intervention Distance (SID)
 - count how many node pairs (i, j) exist where G* would produce a different intervention distribution than G.

- Example:
 - \circ (X,Y), (Y,X), (Z,X), (Z,Y): no difference
 - \circ (X,Z), (Y,Z): different (Y -> Z not in G*)
 - o SID = 2





Other Causal Discovery Models

Score-Based

- Search for the best-fitting graph by optimizing a scoring function like BIC or likelihood.
- GES[3], FGES[4]

Functional Form-Based

- Assume specific functional forms (e.g., additive noise) to infer causal direction.
- LiNGAM[5], ANM[6]

Optimization-Based

- Frame structure learning as a continuous optimization problem over graphs with acyclicity constraints.
- NOTEARS[7], DAG-GNN[8]

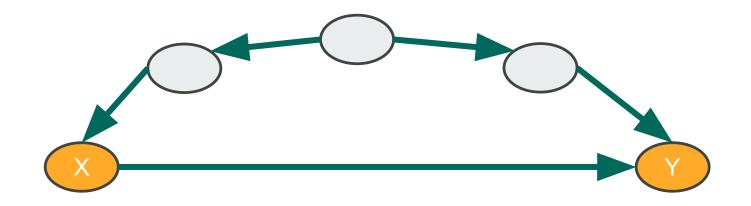
Temporal Data

- Extend causal discovery to time series by accounting for time lags and autocorrelation.
- PCMCI+[9], VAR-LiNGAM[10]

Task: Causal Effect Estimation

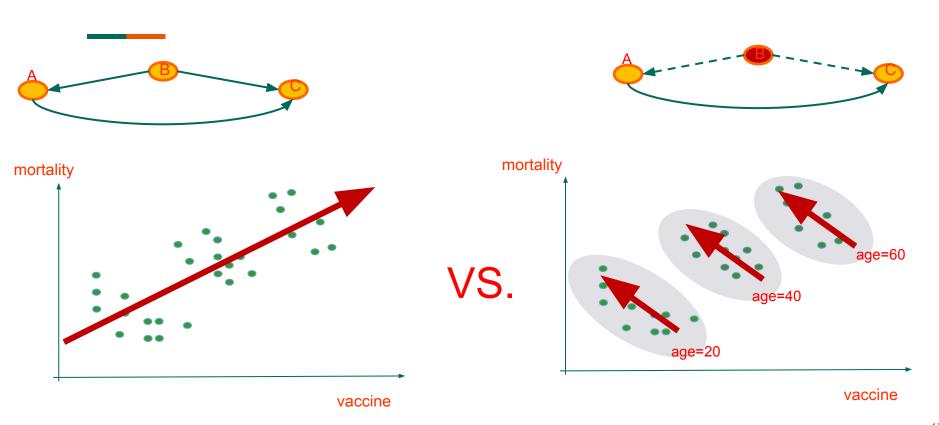
- 1. What is Causal Effect Estimation?
- 2. Backdoor Adjustment
- 3. Treatment Effect
- 4. Model: S-Learner
- 5. Model: T-Learner
- 6. Metrics

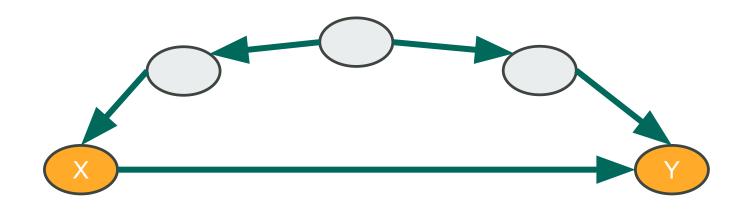
Causal Effect Estimation

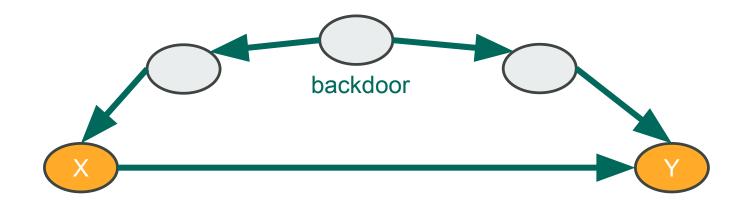


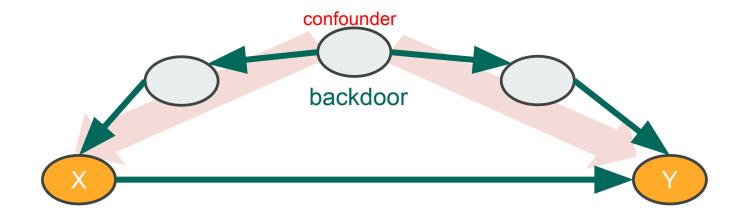
If I apply a particular treatment on X, what would its effect be on Y?

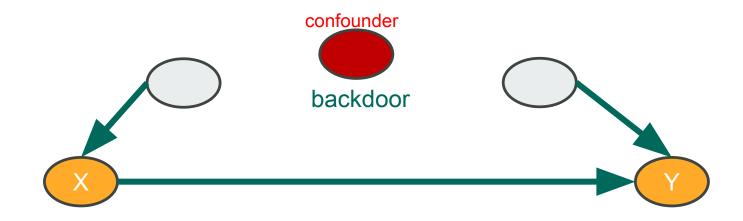
Eliminating confounding effects through conditioning...











Key Concept: Treatment Effect

Individual Treatment Effect (ITE)

- The effect of treatment on a single unit
 - $\circ \qquad \mathsf{ITE}_{\mathsf{i}} = \mathsf{Y}_{\mathsf{i}}(\mathsf{1}) \mathsf{Y}_{\mathsf{i}}(\mathsf{0})$
- ITE(Emily) = 0 1 = -1

Customer	Y	Y(0)	Y(1)	T	X
Emily	1	0	1	1	0
Michael	0	0	1	0	0
Olivia	0	0	1	0	1
David	1	0	1	1	0
Sophia	0	0	1	0	0
James	1	1	1	1	1
Charlotte	1	1	1	0	1
Ethan	0	0	0	1	0
Ava	0	0	1	0	0
Benjamin	1	0	1	1	0

Key Concept: Treatment Effect

Individual Treatment Effect (ITE)

- The effect of treatment on a single unit
 - $\circ \qquad \mathsf{ITE}_{\mathsf{i}} = \mathsf{Y}_{\mathsf{i}}(1) \mathsf{Y}_{\mathsf{i}}(0)$
- ITE(Emily) = 0 1 = -1

Conditional Average Treatment Effect (CATE)

- The average effect given a subgroup or covariates X:
 - \circ CATE(X) = E[Y(1) Y(0) | X]
- CATE(X = 0) = [(1-0)*6 + (0-0)]/7 = 0.85

Customer	Y	Y(0)	Y(1)	T	X
Emily	1	0	1	1	0
Michael	0	0	1	0	0
Olivia	0	0	1	0	1
David	1	0	1	1	0
Sophia	0	0	1	0	0
James	1	1	1	1	1
Charlotte	1	1	1	0	1
Ethan	0	0	0	1	0
Ava	0	0	1	0	0
Benjamin	1	0	1	1	0

Key Concept: Treatment Effect

Individual Treatment Effect (ITE)

- The effect of treatment on a single unit
 - $\circ \qquad \mathsf{ITE}_{\mathsf{i}} = \mathsf{Y}_{\mathsf{i}}(1) \mathsf{Y}_{\mathsf{i}}(0)$
- ITE(Emily) = 0 1 = -1

Conditional Average Treatment Effect (CATE)

- The average effect given a subgroup or covariates X:
 - \circ CATE(X) = E[Y(1) Y(0) | X]
- CATE(X = 0) = [(1-0)*6 + (0-0)]/7 = 0.85

Average Treatment Effect (ATE)

- The overall average effect across the population:
 - o ATE = E[Y(1) Y(0)]
- ATE = [(1-0)*7+(1-1)*2+(0-0)]/10=0.3

Customer	Y	Y(0)	Y(1)	T	X
Emily	1	0	1	1	0
Michael	0	0	1	0	0
Olivia	0	0	1	0	1
David	1	0	1	1	0
Sophia	0	0	1	0	0
James	1	1	1	1	1
Charlotte	1	1	1	0	1
Ethan	0	0	0	1	0
Ava	0	0	1	0	0
Benjamin	1	0	1	1	0

Common Assumptions for Causal Inference

- Stable Unit Treatment Value Assumption (SUTVA)
 - No interference among units.
 - Violation: social network, treated units may more likely interact with other treated units. Spillover effect.
 - Treatment gives the same outcome under the same conditions.
 - Also known as consistency.
- Positivity
- Unconfoundedness (also known as Ignorability)

Common Assumptions for Causal Inference

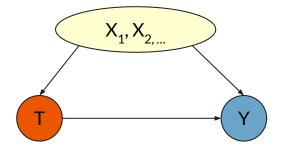
- Stable Unit Treatment Value Assumption (SUTVA)
 - No interference among units.
 - Violation: social network, treated units may more likely interact with other treated units. Spillover effect.
 - Treatment gives the same outcome under the same conditions.
 - Also known as consistency.
- Positivity
 - Have samples in both control and treated groups.
 - 0 < P(T = 1|X) < 1
 - Violation: all samples are assigned to a single group.
- Unconfoundedness (also known as Ignorability)

Common Assumptions for Causal Inference

- Stable Unit Treatment Value Assumption (SUTVA)
 - No interference among units.
 - Violation: social network, treated units may more likely interact with other treated units. Spillover effect.
 - Treatment gives the same outcome under the same conditions.
 - Also known as consistency.
- Positivity
 - Have samples in both control and treated groups.
 - \circ 0 < P(T = 1|X) < 1
 - Violation: all samples are assigned to a single group.
- Unconfoundedness
 - Also known as Ignorability
 - All confounders are observed. No unmeasured confounders.
 - Latent confounders can't be controlled directly, leave the backdoor path open.

Key idea:

- Control for confounders $(X_1, X_2, ...)$ to block the backdoor path.
- Separate datasets to control (T=1) and treated (T=0) groups, and fit a corresponding model.
- Full flexibility on the choice of models



- T: binary treatment, vaccine
- Y: outcome, mortality rate
- $X = \{X_1, X_{2,...}\}$: confounders, such as age, health, etc.

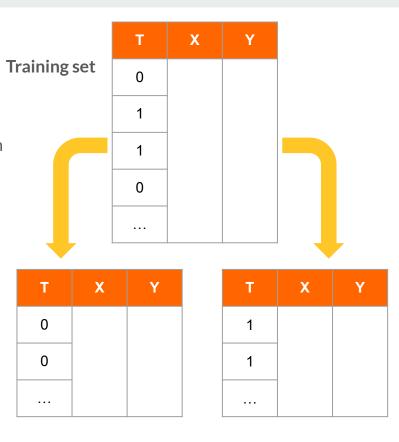
Steps

1. Choose any regression model f (e.g., linear model, random forest, neural net).

Т	Х	Υ
0		
1		
1		
0		

Steps

- 1. Choose any regression model f (e.g., linear model, random forest, neural net).
- 2. Split training data by treatment T.
 - a. Fit $Y_1 = f_1(X)$ on samples with T = 1
 - b. Fit $Y_0 = f_0(X)$ on samples with T = 0

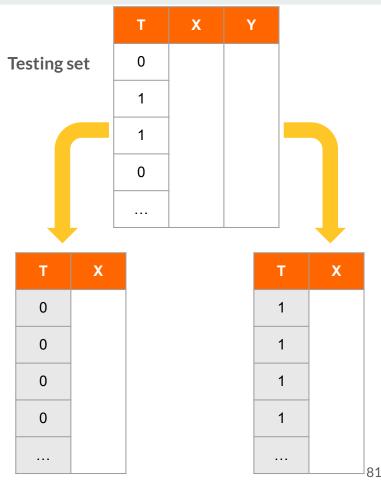


$$Y = f_0(X)$$

$$Y = f_1(X)$$

Steps

- 1. Choose any regression model f (e.g., linear model, random forest, neural net).
- 2. Split training data by treatment T.
 - a. Fit $Y_1 = f_1(X)$ on samples with T = 1
 - b. Fit $Y_0 = f_0(X)$ on samples with T = 0
- 3. On the test set
 - a. Create two copies of testing dataset with the same confounders X.
 - b. Set T = 1 in one copy, T = 0 in the other.
 - c. Use Y_1 to predict T=1, and Y_0 to predict T=0
- 4. Estimate:
 - a. ATE = $E_X[f_1(T=1, X) f_0(T=0, X)]$
 - b. CATE(X) = $E[f_1(T=1, X) f_0(T=0, X)]$
 - c. ITE = $f_1(T=1, X_i) f_0(T=0, X_i)$



Metrics

ATE, CATE

- Compare with ground truth directly (synthetic data).
- On real-world data, we often assume the test set is **balanced** across treatment groups to approximate these comparisons.

ITE

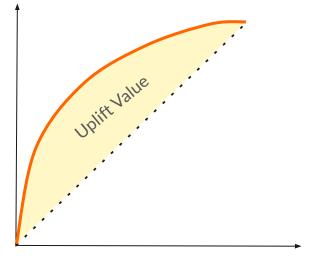
- Can't observe both treated and untreated outcomes for the same individual.
- Direct evaluation of ITE is impossible on real-world data.

Metrics

Uplift Curve

- Rank individuals by predicted ITE, from highest to lowest.
- Partition the dataset into percentiles (e.g., deciles) by rank $(g_1, g_2, ...)$.
- In each group, compute the observed uplift:
 - \circ Uplift = E[Y | T = 1, g] E[Y | T = 0, g]
- Plot cumulative uplift (Y-axis) vs. % of population targeted (X-axis) → Qini curve.
- Uplift Value:
 - Area between model's Uplift curve and random targeting line.
 - Standardized (by sample count) uplift curve is called Qini curve.

Cumulative Uplift



Samples

Other Causal Effect Models

Matching [13]

- Compare samples in treated and control groups with similar characteristics.
- Mimics a randomized experiment by balancing covariates.

IPW (Inverse Probability Weighting) [15]

- Reweights individuals to create a balanced virtual population.
- Especially useful when treated and untreated groups are very different.

Meta-Learners [16]

- Use machine learning to estimate outcomes under treatment and control separately.
- Adaptable to flexible models and heterogeneous effects.

Causal Forests [17]

- Tree-based method that learns how treatment effects vary across individuals.
- Automatically finds subgroups with different effects.

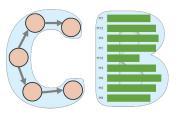
Recap and Resources

Causal Discovery

- Constraint-based: PC, FCI
- Score-based: GES, FGES
- Functional: LiNGAM, ANM
- Optimization-based: NOTEARS, **DAG-GNN**
- Temporal: PCMCI+, VAR-LiNGAM

Causal Effect Estimation

- Regression-based: Linear regression, GLMs
- Matching: Propensity score, Mahalanobis
- IPW (Inverse Probability Weighting)
- Meta-learners: S-Learner, T-Learner, X-Learner, R-Learner
- Causal Forests
- DML (Double Machine Learning)



References

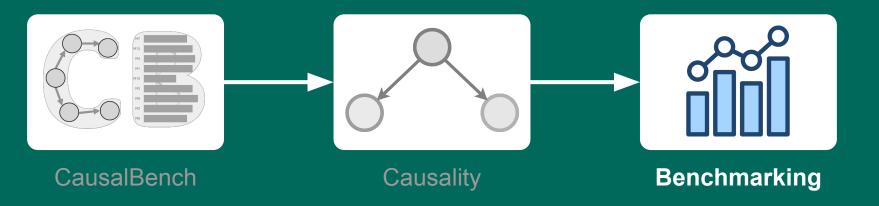
- 1. Spirtes, Peter, and Clark Glymour. "An algorithm for fast recovery of sparse causal graphs." Social science computer review 9.1 (1991): 62-72.
- 2. Spirtes, Peter. "An anytime algorithm for causal inference." International Workshop on Artificial Intelligence and Statistics. PMLR, 2001.
- 3. Chickering, David Maxwell. "Optimal structure identification with greedy search." Journal of machine learning research 3.Nov (2002): 507-554.
- 4. Ramsey, Joseph, et al. "A million variables and more: the fast greedy equivalence search algorithm for learning high-dimensional graphical causal models, with an application to functional magnetic resonance images." *International journal of data science and analytics* 3.2 (2017): 121-129.
- 5. Shimizu, Shohei, et al. "A linear non-Gaussian acyclic model for causal discovery." Journal of Machine Learning Research 7.10 (2006).
- 6. Peters, Jonas, et al. "Causal discovery with continuous additive noise models." The Journal of Machine Learning Research 15.1 (2014): 2009-2053.
- 7. Zheng, Xun, et al. "Dags with no tears: Continuous optimization for structure learning." Advances in neural information processing systems 31 (2018).
- 8. Yu, Yue, et al. "DAG-GNN: DAG structure learning with graph neural networks." International conference on machine learning. PMLR, 2019.
- 9. Runge, Jakob. "Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets." Conference on uncertainty in artificial intelligence. Pmlr, 2020.
- 10. Hyvärinen, Aapo, et al. "Estimation of a structural vector autoregression model using non-Gaussianity." Journal of Machine Learning Research 11.5 (2010).
- 11. Montgomery, Douglas C., Elizabeth A. Peck, and G. Geoffrey Vining. *Introduction to linear regression analysis*. John Wiley & Sons, 2021.
- 12. Nelder, John Ashworth, and Robert WM Wedderburn. "Generalized linear models." *Journal of the Royal Statistical Society Series A: Statistics in Society* 135.3 (1972): 370-384.
- 13. Holland, Paul W. "Statistics and causal inference." Journal of the American statistical Association 81.396 (1986): 945-960.
- 14. Rubin, Donald B. "Estimating causal effects of treatments in randomized and nonrandomized studies." Journal of educational Psychology 66.5 (1974): 688.
- 15. Horvitz, Daniel G., and Donovan J. Thompson. "A generalization of sampling without replacement from a finite universe." *Journal of the American statistical Association* 47.260 (1952): 663-685.
- 16. Künzel, Sören R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." *Proceedings of the national academy of sciences* 116.10 (2019): 4156-4165.
- 17. Wager, Stefan, and Susan Athey. "Estimation and inference of heterogeneous treatment effects using random forests." *Journal of the American Statistical Association* 113.523 (2018): 1228-1242.
- 18. Chernozhukov, Victor, et al. "Double/debiased machine learning for treatment and structural parameters." (2018): C1-C68.

End of Deck 2

Any Questions?

CausalBench: Causal Learning Research Streamlined

Hands-On Benchmarking



tutorial.causalbench.org

This research is funded by NSF Grant 2311716, "CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration", and NSF Grants #2230748, "PIRE: Building Decarbonization via Al-empowered District Heat Pump Systems", #2412115, "PIPP Phase II: Analysis and Prediction of Pandemic Expansion (APPEX)" and USACE #GR40695, "Designing nature to enhance resilience of built infrastructure in western US landscapes".

Installing CausalBench Python Package

Getting started

- https://tutorial.causalbench.org/
- Google Colab Notebook (Jupyter)

Prerequisites

- Python (>= 3.10)
- pip

\$ pip install causalbench-asu

Additional requirements for this tutorial

gcastle

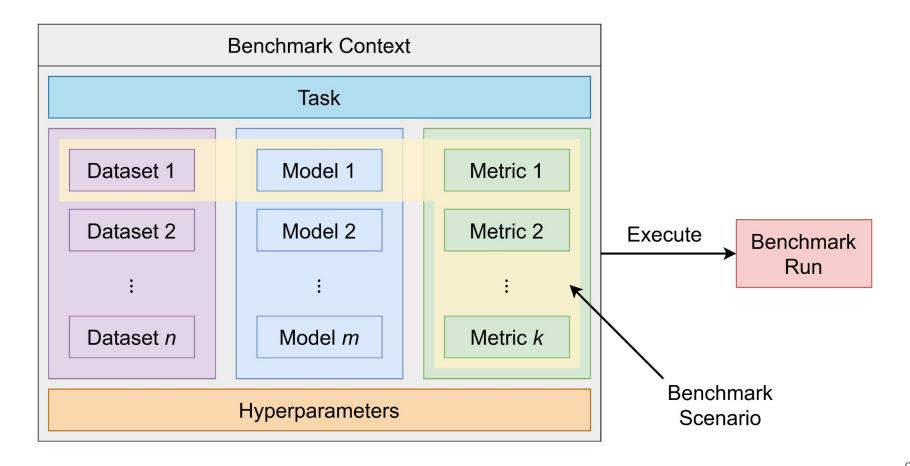
Using CausalBench Python Package

Next Steps

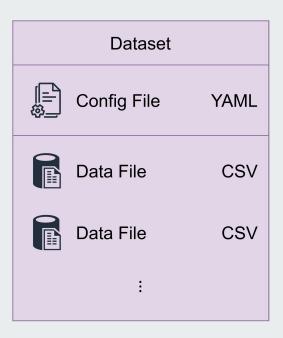
- Create an account on https://causalbench.org/
- Use credentials for first use of CausalBench Python package

Credentials required
Email: user@example.com
Password:
P

CausalBench: Modules

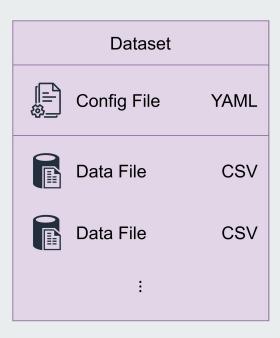


CausalBench: Modules (Dataset)



- Metadata
 - name, description, and URL
- Names and metadata of data files
- Structure of data files
 - Number of rows
 - Columns number, name, data type, description
 - Index time, space, etc.

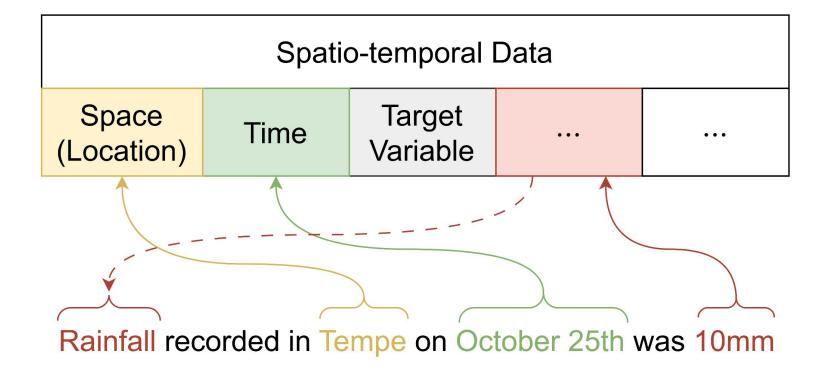
CausalBench: Modules (Dataset)



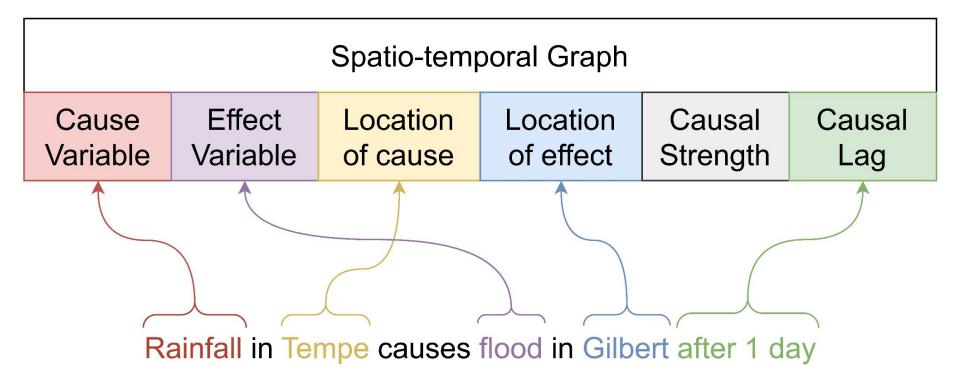
Data file:

- Tabular data
- Data formats
 - Spatio-temporal Data
 - Spatio-temporal Graph
- Helper functions
 - Static tabular data →
 Spatio-temporal data
 - Static adjacency matrix →
 Spatio-temporal graph

CausalBench: Modules (Dataset) - Data Formats



CausalBench: Modules (Dataset) - Data Formats

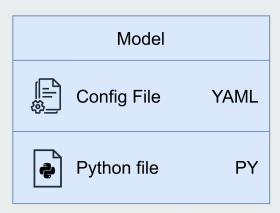


CausalBench: Modules (Model)



- Metadata
 - o name, description, and URL
- Name and metadata of Python file
- Task
 - Causal Discovery
 - Causal Inference, etc.
- Hyperparameters
 - data type, description, and default value

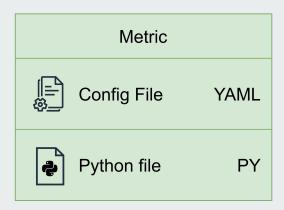
CausalBench: Modules (Model)



Python file:

- Function to take accept inputs and provide outputs
 - Comply with function signature specified by task

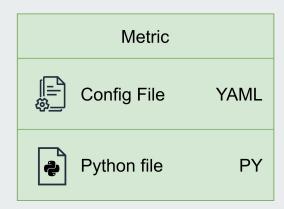
CausalBench: Modules (Metric)



Same structure as model

- Metadata
 - o name, description, and URL
- Name and metadata of Python file
- Task
 - Causal Discovery
 - Causal Inference, etc.
- Hyperparameters
 - data type, description, and default value

CausalBench: Modules (Metric)



Same structure as model

Python file:

- Function to take accept inputs and provide outputs
 - Comply with function signature specified by task

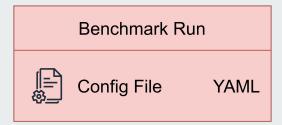
CausalBench: Modules (Benchmark Context)

- Metadata
 - o name, description, and URL
- Task
 - Causal Discovery
 - Causal Inference, etc.
- Datasets
 - Dataset IDs and versions
 - Data files to task mapping

CausalBench: Modules (Benchmark Context)

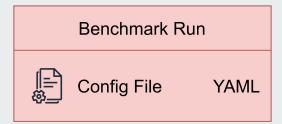
- Models
 - Model IDs and versions
 - Model hyperparameters
 (if not using default values)
- Metrics
 - Metric IDs and versions
 - Metric hyperparameters
 (if not using default values)

CausalBench: Modules (Benchmark Run)



- Reference to Benchmark Context
 - Benchmark Context ID and version
- Platform information
 - Operating System
 - CPU
 - o GPU
 - Memory
 - Disk

CausalBench: Modules (Benchmark Run)



- Scenarios
 - Consists of 1 dataset, 1 model, and multiple metrics
 - Dataset
 - ID and version
 - Model and Metrics
 - IDs and versions
 - Output / results
 - Profiling information
 - Execution time
 - Hardware utilization
 - Software packages

End of Deck 3

Any Questions?

Agenda for today's Hands-on Tutorial

tutorial.causalbench.org

See you back at 10am!

08:00-08:05	Introduction to the Tutorial
08:05-08:25	Introduction to CausalBench
08:25-08:55	Introduction to Causality and Causal Learning
08:55-09:30	Delve into the CasualBench framework to create and execute benchmarks
09:30-10:00	Coffee break
10:00-10:10	Shorter introduction to CausalBench
10:00-10:10 10:10-10:35	Shorter introduction to CausalBench Explore published benchmarks and reproduce experiments
	Explore published benchmarks and

CausalBench: Causal Learning **Research Streamlined**

Ahmet Kapkiç * Pratanu Mandal * Abhinav Gorantla * Shu Wan Ertuğrul Çoban Dr. Paras Sheth Dr. Huan Liu *

Causal Learning Algorithms This research is funded by NSF Grant 2311716, "CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration", and NSF Grants #2230748, "PIRE: Building Decarbonization via Al-empowered District Heat Pump Systems", #2412115, "PIPP Phase II: Analysis and Prediction of Pandemic Expansion (APPEX)" and USACE #GR40695, "Designing nature to enhance resilience of built infrastructure in western US landscapes".

Standardized **Fvaluation**

(Benchmarking)

OpenML

Collaborative

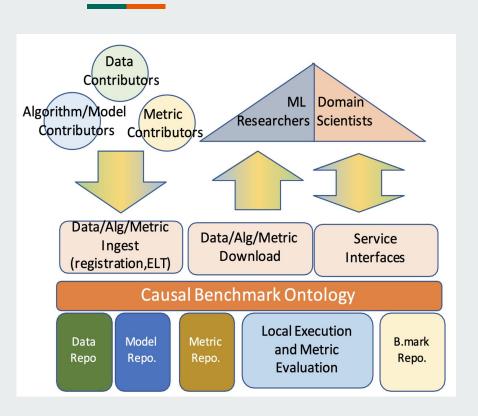
Spaces

Support for

tutorial.causalbench.org

Dr. K. Selçuk Candan In-person presenters

What is CausalBench?



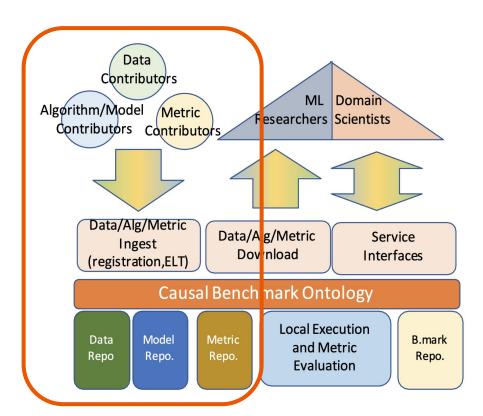
 CausalBench is a benchmarking platform for <u>Causal Learning</u> <u>research</u>.

Goals:

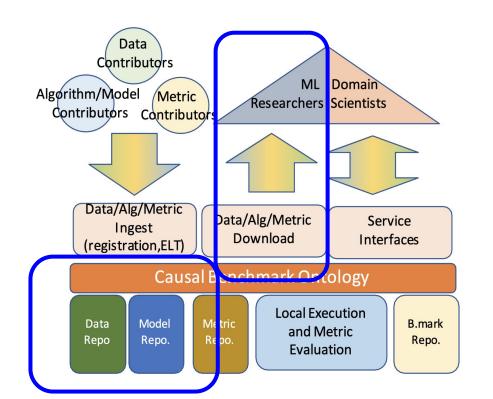
- Promoting universal adoption of standard datasets, metrics and procedures for causal learning.
- o Facilitating collaboration.
- Trustable and reproducible benchmarking.
- Fair and flexible comparison of models.

CausalBench: Use Scenario #1

Data, model, metric contributor

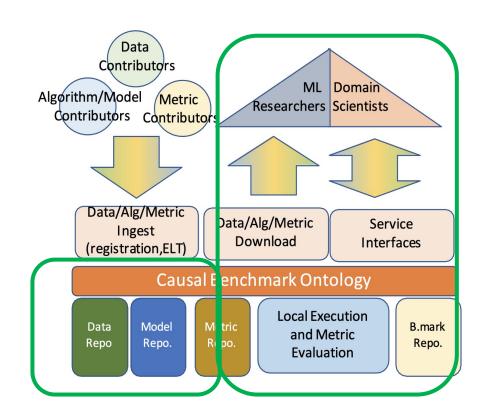


CausalBench: Use Scenario #2



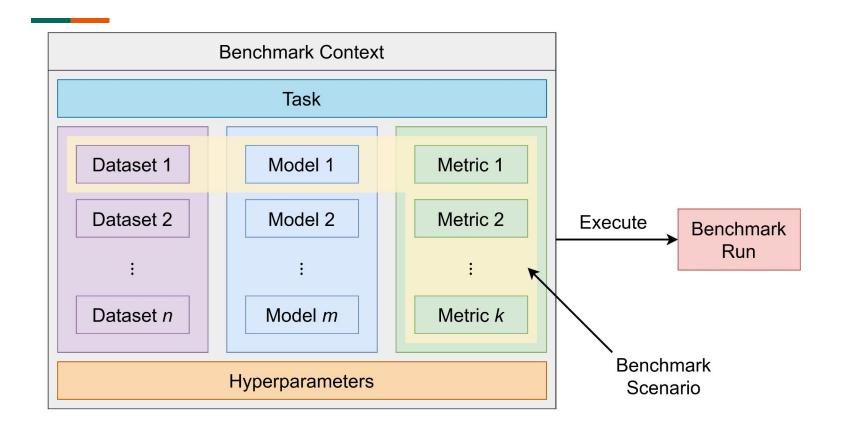
Data, Model, Metric Explorer

CausalBench: Use Scenario #3

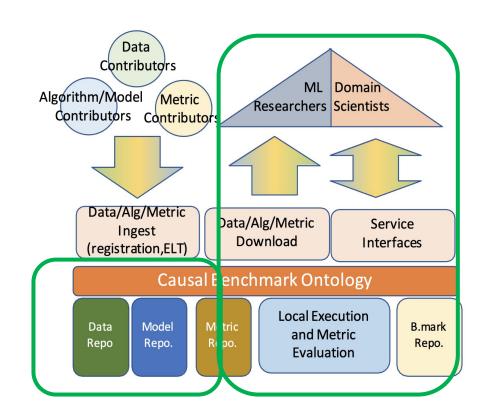


Benchmark executor

What is a Benchmark?



CausalBench: Use Scenario #3

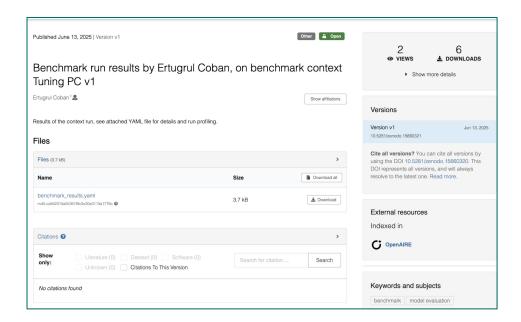


Benchmark executor

Sample benchmark output

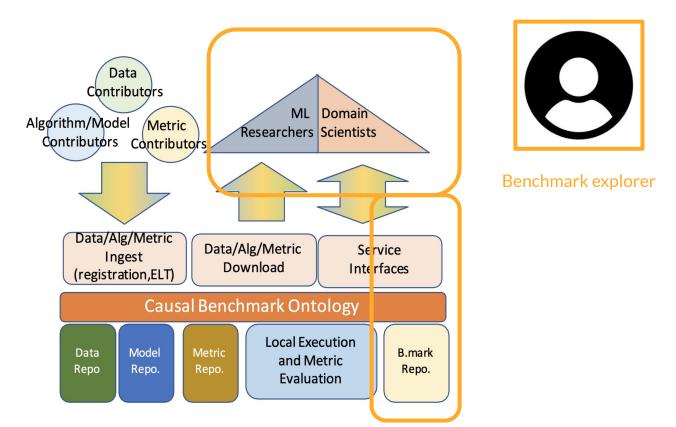
- Includes
 - Model
 - Dataset
 - Hardware/software profiling
 - Accuracy metrics

Uploaded and stored in CausalBench



Permanently indexed (and citable) in Zenodo

CausalBench: Use Scenario #4



CausalBench: Explaining benchmark results

Result ID	Dataset	Model	Metric	Context	Result	Duration	Created On	Run Published By	Actions	Visibility
630	<u>time_sim</u>	<u>VAR-</u> LINGAM	accuracy_temporal	Benchmark: VAR-LINGAM, PCMCIplus	0.9375	8.31 seconds	February 16th 2025	Abhinav Gorantla (agorant2@asu.edu)	⊉ 🕹	PUBLIC
640	Short-term electricity load forecasting (Panama)	VAR- LINGAM	accuracy_temporal	Benchmark: VAR-LiNGAM, PCMCIplus	0.568359375	4.67 minutes	February 16th 2025	Abhinav Gorantla (agorant2@asu.edu)	26	PUBLIC

• Sample question:

- Why does VAR-LiNGAM have better accuracy with time_sim but lower training time in this benchmark?
 - Did the hyperparameters play a role?
 - Could it be because of the dataset size?
 - Is there something else?
- These questions can be answered by generating explanations using CausalBench.

What is Causal Learning?

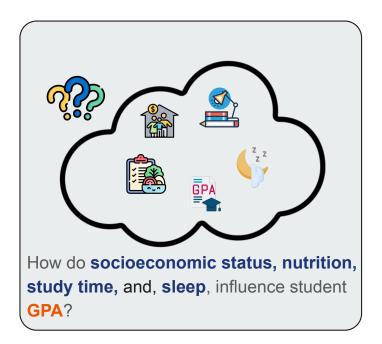
Causal Learning answers the question of "Why" and describe the relationship between

- a cause (an action, event, or condition), and
- its effect (an outcome that results from it).

How do socioeconomic status, nutrition, study time, and, sleep, influence student GPA?

What's the effect of the **vaccine** on a patient's **health?**

Two Tasks in Causal Learning



Causal Discovery

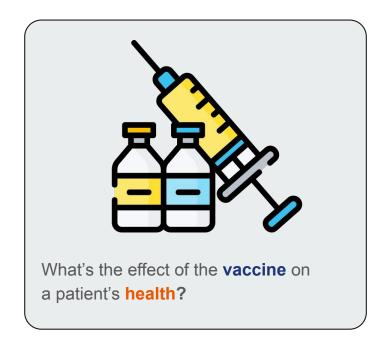
We don't know what causes what. We want to uncover the structure — who influences whom.

What's the effect of the **vaccine** on a patient's **health?**

Two Tasks in Causal Learning

Causal Discovery

We don't know what causes what. We want to uncover the structure — who influences whom.



Causal Effect Estimation

Knowing cause and effect, want to estimate how much effect one variable has on another.

Quick Recap: Hands-On Benchmarking

Benchmarking using CausalBench

- Static Causal Discovery
- Create and publish:
 - Dataset
 - Model
 - Metric
 - Benchmark Context
- Execute the Benchmark Context
- Publish generate Benchmark Run
- Explore the published modules on the CausalBench website

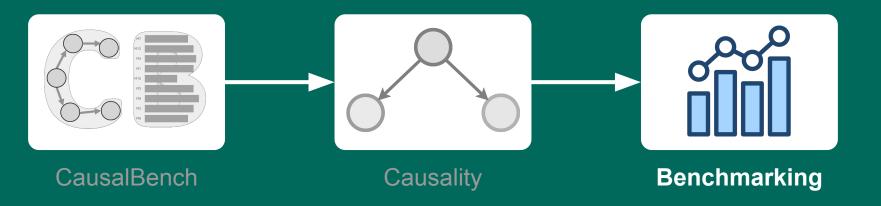
Agenda for today's Hands-on Tutorial

tutorial.causalbench.org

08:00-08:05	Introduction to the Tutorial
08:05-08:25	Introduction to CausalBench
08:25-08:55	Introduction to Causality and Causal Learning
08:55-09:30	Delve into the CasualBench framework to create and execute benchmarks
09:30-10:00	Coffee break
10:00-10:10	Shorter introduction to CausalBench
10:10-10:35	Explore published benchmarks and reproduce experiments
10:35-10:50	Gain further insights using Causal Explanation and Recommendations
10:50-11:00	CausalBench: What's Next?

CausalBench: Causal Learning Research Streamlined

Hands-On Benchmarking



This research is funded by NSF Grant 2311716, "CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration", and NSF Grants #2230748, "PIRE: Building Decarbonization via Al-empowered District Heat Pump Systems", #2412115, "PIPP Phase II: Analysis and Prediction of Pandemic Expansion (APPEX)" and USACE #GR40695, "Designing nature to enhance resilience of built infrastructure in western US landscapes".

Quick Recap: Installing CausalBench Python Package

Getting started

- https://tutorial.causalbench.org/
- Google Colab Notebook (Jupyter)

Prerequisites

- Python (>= 3.10)
- pip

\$ pip install causalbench-asu

Additional requirements for this tutorial

gcastle

Quick Recap: Using CausalBench Python Package

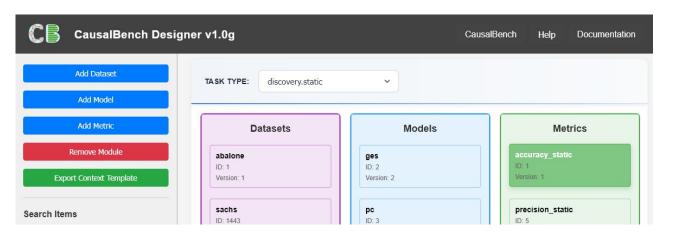
Next Steps

- Create an account on https://causalbench.org/
- Use credentials for first use of CausalBench Python package

Credentials required
Email: user@example.com
Password: /

CausalBench Designer

- https://designer.causalbench.org/
- Design a Benchmark Context using GUI
- Zero coding environment



CausalBench Designer

Let's design a Benchmark Context!

- Task:
 - Static Causal Discovery
- Datasets:
 - Abalone
 - Sachs
- Models:
 - o GES
 - o PC

- Metrics:
 - Accuracy
 - Precision
 - Recall
 - F1-score
 - Structural Hamming Distance (SHD)

CausalBench: Reproducibility

How can we reproduce someone else's benchmark?

- Benchmark Context:
 - Module ID: 19
 - Version: 1

CausalBench: Transparency

Provenance of public Benchmark Runs

Complete

Should store any information collected during benchmarking

Available

 Anyone should be able to access and cite

Permanent

- Should always be available once made public
- Cannot be retracted

Immutable

- Prevent changes
- Original state is always preserved

CausalBench: Transparency

Zenodo

- Public Benchmark Runs are published to Zenodo
- All results and profiling information are recorded
- Digital Object Identifier (DOI) is assigned
- An immutable URL is generated
- Can be cited for future research

CausalBench: Explanation

- Rich corpus of benchmark data at our disposal
- What causal relationships can we extract from the benchmark runs?
- Potential questions:
 - How does CPU affect the execution time?
 - How does a hyperparameter affect the F1 score?

. . .

Causal Explanation attempts to answer such questions

CausalBench: Explanation

- Causal graph from domain knowledge
- Causal effect estimation estimate strengths of edges for a target
- Rank causes by the magnitude of their causal strength on the target

 $d \rightarrow \mathsf{Dataset}$

 $m \rightarrow \mathsf{Model}$

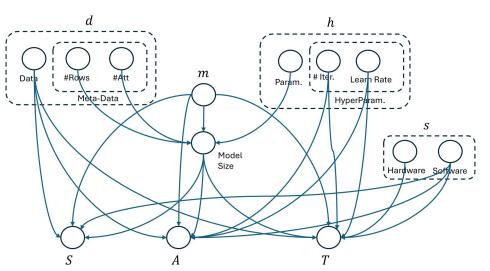
 $h \rightarrow \text{Hyperparameter}$

 $s \rightarrow System configuration$

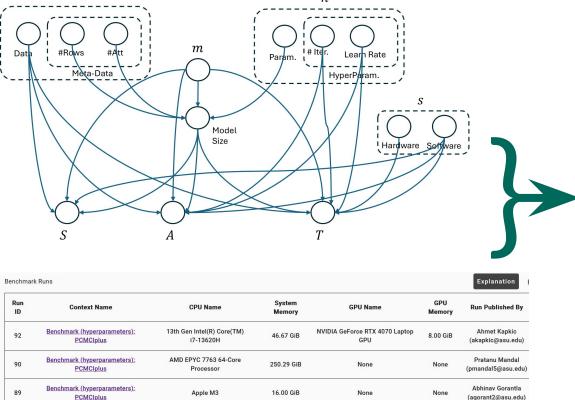
 $S \rightarrow System profiling data$

 $A \rightarrow Accuracy metric$

 $T \rightarrow \text{Execution time}$



CausalBench: Explanation



127.80 GIB

NVIDIA GeForce RTX 3090

12th Gen Intel(R) Core(TM)

19-12900KF

Benchmark (hyperparameters):

PCMCIplus

63

CausalBench: Causal Explanation Report

2025-08-04 01:53:46

Summary: Effects on Time.Duration (4000 experiments)

Variable	Effect	Strength
Model.ReadBytes	<u> </u>	679.4513
Model.GPUMemoryIdle	_	-250.6410
Model.WriteBytes	<u> </u>	75.8604
Model.Memory	<u> </u>	28.4219
Model.GPUMemoryPeak	_	8.5581
HP.max_conds_dim	A	4.5975
HW.CPUSingleCore	A	4.0273
HW.GPUScore	A	4.0273
HW.StorageTotal	A	4.0273
HW.CPUMultiCore	A	4.0195
HW.MemoryTotal	A	4.0156
HP.alpha	_	1.7737

This variable improves Time.Duration
This variable worsens Time.Duration

Pratanu Mandal

(pmandal5@asu.edu)

24.00 GiB

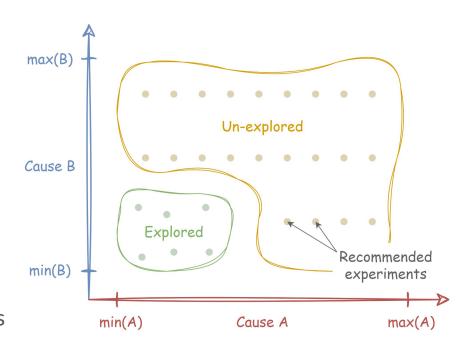
This variable has no effect on Time.Duration

CausalBench: Recommendation

- Can we recommend more causally meaningful experiments?
- Causal Explanation provides key insights exploit this!
- Key Idea:
 - Particular cause has more effect on a target
 - Further exploration of this cause might yield more granular insights
 - Recommend more granular experiments for this cause

CausalBench: Recommendation

- Causally informed space filling strategy
- Causes that have larger impacts on the target are more finely experimented
- Avoid new experiments that are close to existing benchmark runs



Effect of Cause A is greater than Cause B

CausalBench: Recommendation

CausalBench: Causal Explanation Report

2025-08-04 01:53:46

Benchmark (hyperparameters):

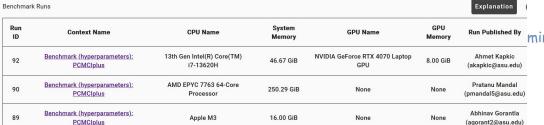
PCMCIplus

Summary: Effects on Time.Duration (4000 experiments)

Variable	Effect	Strength
Model.ReadBytes	A	679.4513
Model.GPUMemoryldle	V	-250.6410
Model.WriteBytes	<u> </u>	75.8604
Model.Memory	A	28.4219
Model.GPUMemoryPeak	A	8.5581
HP.max_conds_dim	<u> </u>	4.5975
HW.CPUSingleCore	A	4.0273
HW.GPUScore	A	4.0273
HW.StorageTotal	A	4.0273
HW.CPUMultiCore	A	4.0195
HW.MemoryTotal	<u> </u>	4.0156

12th Gen Intel(R) Core(TM)

19-12900KF



127.80 GIB

NVIDIA GeForce RTX 3090

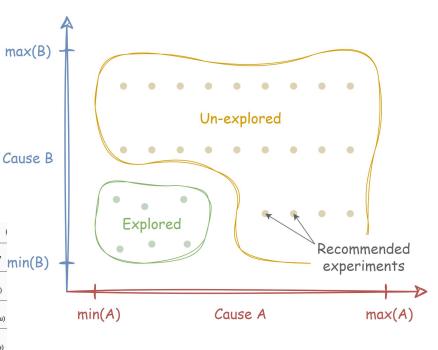
Recommendations:

Pratanu Mandal

(pmandal5@asu.edu)

24.00 GiB

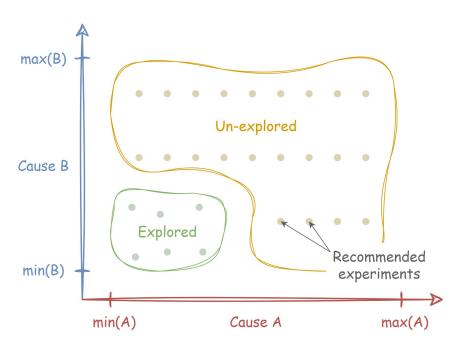
Additional Hyperparameter settings to consider for your experiments: [HP.max_conds_dim, HP.alpha]: [(1.0, 0.355), (13.25, 0.355), (25.5, 0.355), (37.75, 0.355), (50.355)]



CausalBench: Recommendation - Hands On

Let CausalBench to explain and recommend some benchmarks for you!

- Filter by
 - o Context ID: 10
 - Context Version: 2
- Explanation
 - By: Time Elapsed
 - PCMCIPlus:
 - alpha.Min: 0.01
 - alpha.Max: 0.8
 - max_conds_dim.min: 1
 - max_conds_dim.min: 30
- Analyze!



End of Deck 4

Any Questions?

CausalBench: What's Next?

Going public

- Open Source
- Workshops
- Creating a research community

• • •

Conclusions

- Benchmarking: Problems
- Causality
- CausalBench
- Benchmarking:
 - Analyzing
 - Improving

Thank you!

Any Questions?

CausalBench (Application)

KDD Tutorial (Usage)

Docs/Github (Contribution)

Further questions? Feedbacks? Want to use CausalBench?

support@causalbench.org